1-2hit |
Naoya MOCHIKI Tetsuji OGAWA Tetsunori KOBAYASHI
We propose a new type of direction-of-arrival estimation method for robot audition that is free from strict head related transfer function estimation. The proposed method is based on statistical pattern recognition that employs a ratio of power spectrum amplitudes occurring for a microphone pair as a feature vector. It does not require any phase information explicitly, which is frequently used in conventional techniques, because the phase information is unreliable for the case in which strong reflections and diffractions occur around the microphones. The feature vectors we adopted can treat these influences naturally. The effectiveness of the proposed method was shown from direction-of-arrival estimation tests for 19 kinds of directions: 92.4% of errors were reduced compared with the conventional phase-based method.
Naoya MOCHIKI Tetsuji OGAWA Tetsunori KOBAYASHI
A new type of sound source segregation method using robot-mounted microphones, which are free from strict head related transfer function (HRTF) estimation, has been proposed and successfully applied to three simultaneous speech recognition systems. The proposed segregation method is executed with sound intensity differences that are due to the particular arrangement of the four directivity microphones and the existence of a robot head acting as a sound barrier. The proposed method consists of three-layered signal processing: two-line SAFIA (binary masking based on the narrow band sound intensity comparison), two-line spectral subtraction and their integration. We performed 20 K vocabulary continuous speech recognition test in the presence of three speakers' simultaneous talk, and achieved more than 70% word error reduction compared with the case without any segregation processing.