Author Search Result

[Author] Nobuaki OKADA(2hit)

1-2hit
  • Logic-In-Control-Architecture-Based Reconfigurable VLSI Using Multiple-Valued Differential-Pair Circuits

    Nobuaki OKADA  Michitaka KAMEYAMA  

     
    PAPER-Application of Multiple-Valued VLSI

      Vol:
    E93-D No:8
      Page(s):
    2126-2133

    A fine-grain bit-serial multiple-valued reconfigurable VLSI based on logic-in-control architecture is proposed for effective use of the hardware resources. In logic-in-control architecture, the control circuits can be merged with the arithmetic/logic circuits, where the control and arithmetic/logic circuits are constructed by using one or multiple logic blocks. To implement the control circuit, only one state in a state transition diagram is allocated to one logic block, which leads to reduction of the complexity of interconnections between logic blocks. The fine-grain logic block is implemented based on multiple-valued current-mode circuit technology. In the fine-grain logic block, an arbitrary 3-variable binary function can be programmed by using one multiplexer and two universal literal circuits. Three-variable binary functions are used to implement the control circuit. Moreover, the hardware resources can be utilized to construct a bit-serial adder, because full-adder sum and carry can be realized by programming in the universal literal circuit. Therefore, the logic block can be effectively reconfigured for arithmetic/logic and control circuits. It is made clear that the hardware complexity of the control circuit in the proposed reconfigurable VLSI can be reduced in comparison with that of the control circuit based on a typically sequential circuit in the conventional FPGA and the fine-grain field-programmable VLSI reported until now.

  • Fine-Grain Multiple-Valued Reconfigurable VLSI Using Series-Gating Differential-Pair Circuits and Its Evaluation

    Nobuaki OKADA  Michitaka KAMEYAMA  

     
    PAPER

      Vol:
    E91-C No:9
      Page(s):
    1437-1443

    A fine-grain reconfigurable VLSI for various applications including arithmetic operations is developed. In the fine-grain architecture, it is important to define a cell function which leads to high utilization of a logic block and reduction of a switch block. From the point of view, a universal-literal-based multiple-valued cell suitable for bit-serial reconfigurable computation is proposed. A series-gating differential-pair circuit is effectively employed for implementing a full-adder circuit of Sum and a universal literal circuit. Therefore, a simple logic block can be constructed using the circuit technology. Moreover, interconnection complexity can be reduced by utilizing multiple-valued signaling, where superposition of serial data bits and a start signal which indicates heading of one-word is introduced. Differential-pair circuits are also effectively employed for current-output replication, which leads to high-speed signaling to adjacent cells The evaluation is done based on 90 nm CMOS design rule, and it is made clear that the area of the proposed cell can be reduced to 78% in comparison with that of the CMOS implementatiuon. Moreover, its area-time product becomes 92% while the delay time is increased by 18%.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.