1-6hit |
Nozomi HAGA Jerdvisanop CHAKAROTHAI Keisuke KONNO
The impedance expansion method (IEM) is a circuit-modeling technique for electrically small devices based on the method of moments. In a previous study, a circuit model of a wireless power transfer (WPT) system was developed by utilizing the IEM and eigenmode analysis. However, this technique assumes that all the coupling elements (e.g., feeding loops and resonant coils) are in the absence of neighboring scatters (e.g., bodies of vehicles). This study extends the theory of the IEM to obtain the circuit model of a WPT system in the vicinity of a perfectly conducting scatterer (PCS). The numerical results show that the proposed method can be applied to the frequencies at which the dimension of the PCS is less than approximately a quarter wavelength. In addition, the yielded circuit model is found to be valid at the operating frequency band.
Nozomi HAGA Masaharu TAKAHASHI
This paper proposes a circuit modeling technique for electrically-very-small devices, e.g. electrodes for intrabody communications, coils for wireless power transfer systems, high-frequency transformers, etc. The proposed technique is based on the method of moments and can be regarded as an improved version of the partial element equivalent circuit method.
Nozomi HAGA Masaharu TAKAHASHI
The impedance expansion method (IEM), which has been previously proposed by the authors, is a circuit-modeling technique for electrically-very-small devices. This paper provides a new idea on the principle of undesired radiation in wireless power transfer systems by employing IEM. In particular, it is shown that the undesired radiation is due to equivalent infinitesimal dipoles and loops of the currents on the coils.
Nozomi HAGA Yusaku KASAHARA Kuniyuki MOTOJIMA
In the development of intrabody communication systems, it is important to understand the effects of user's posture on the communication channels. In this study, dynamic measurements of intrabody communication channels were made and their dependences on the grounding conditions were investigated. Furthermore, the physical mechanism of the dynamic communication channels was discussed based on electrostatic simulations. According to the measured and the simulated results, the variations in the signal transmission characteristics depend not only on the distance between the Tx and the Rx but also on the shadowing by body parts.
Nozomi HAGA Kazuyuki SAITO Masaharu TAKAHASHI Koichi ITO
Physical channels of the intra-body communications, in which communications are performed by exciting electric field around the human body, have been treated as a capacitive circuit from the beginning of the development. Although the circuit-like understanding of the channels are helpful to design devices and systems, there is a problem that the results may be invalid if the circuit parameters are incorrectly estimated. In the present study, the values of the circuit parameters are properly derived by solving a boundary value problem of electric potentials of the conductors. Furthermore, approximate models which are appropriate for cases that some of the conductors are grounded are investigated.
Nozomi HAGA Masaharu TAKAHASHI
The impedance expansion method (IEM), which was previously proposed by the authors, is a circuit-modeling technique for electrically-very-small devices. The equivalent circuits derived by the IEM include dependent voltage sources proportional to the powers of the frequency. However, the previous report did not describe how circuit simulators could realize such dependent voltage sources. This paper shows how this can be achieved by approximating the equivalent circuit using only passive elements.