1-2hit |
This paper describes a semi-fragile watermarking scheme for image authentication and tamper-proofing. Each watermark bit is duplicated and randomly embedded in the original image in the discrete wavelet domain by modifying the corresponding image coefficients through quantization. The modifications are made so that they have little effect on the image and that the watermarking is robust against tampering. The watermark image for authentication is reconstructed by taking a weighted vote on the extracted bits. The bits that lose the vote are treated as having been tampered with, and the locations of the lost bits as indicating tampered positions. Thus, authentication and tamper-proofing can be done by observing the images of watermarks that win and lose votes. Sieving, emphasis, and weighted vote were found to be effectively make the authentication and tamper detection more accurate. The proposed scheme is robust against JPEG compression or acceptable modifications, but sensitive to malicious attacks such as cutting and pasting.
A novel two-dimensional discrete wavelet transform (2-DDWT) parallel architecture for higher throughput and lower energy consumption is proposed. The proposed architecture fully exploits full-page burst accesses of DRAM and minimizes the number of DRAM activate and precharge operations. Simulation results revealed that the architecture reduces the number of clock cycles for DRAM memory accesses as well as the DRAM power consumption with moderate cost of internal memory. Evaluation of the VLSI implementation of the architecture showed that the throughput of wavelet filtering was increased by parallelizing row filtering with a minimum area cost, thereby enabling DRAM full-page burst accesses to be exploited.