1-4hit |
Makoto MIYOSHI Masahiro SAKAI Hiroyasu ISHIKAWA Takashi EGAWA Takashi JIMBO Mitsuhiro TANAKA Osamu ODA
For the mass production of GaN-based electronic devices, growth of AlGaN/GaN heterostructures on substrates larger than 100 mm in diameter is indispensable. In this study, we demonstrate the growth of 100-mm-diameter Al0.26Ga0.74N/GaN heterostructures on sapphire substrates by metalorganic vapor phase epitaxy (MOVPE). The obtained films have specular surfaces, good crystal quality and good uniformity of alloy composition across the entire 100-mm-diameter epitaxial wafer. The bowing value of the 100-mm-diameter epitaxial wafer on c-face sapphire substrates is about 40 µm. This bowing value seems to be preferable for electronic device fabrication processes. These epitaxial wafers show good electrical properties.
Masahiro SAKAI Kenta ASANO Subramaniam ARULKUMARAN Hiroyasu ISHIKAWA Takashi EGAWA Takashi JIMBO Tomohiko SHIBATA Mitsuhiro TANAKA Osamu ODA
We have demonstrated AlGaN/GaN high electron mobility transistors (HEMTs) grown on epitaxial AlN/sapphire templates. The crystal qualities and fabricated device performances between AlGaN/GaN HEMTs on epitaxial AlN/sapphire templates and conventional AlGaN/GaN HEMTs on sapphire substrates with low-temperature buffer layer (LT-BLs) are compared with each other. By using epitaxial AlN/sapphire templates instead of LT-BLs, higher mobility was exhibited and superior crystal qualities were observed, as confirmed by X-ray diffraction (XRD), atomic force microscopy (AFM) images and capacitance-voltage measurements. In addition, the dc characteristics of the fabricated devices on epitaxial AlN/sapphire templates were enhanced. AlGaN/GaN HEMTs on epitaxial AlN/sapphire templates are promising candidates for practical applications of nitride-based electronic devices.
Kenji SATO Mikio HANAFUSA Akira NODA Atsutoshi ARAKAWA Toshiaki ASAHI Masayuki UCHIDA Osamu ODA
Pure green ZnTe light-emitting diodes (LEDs) were first realized reproducibly based on high quality ZnTe substrates and a simple thermal diffusion process. This success which overcomes the compensation effect in II-VI materials is due to the use of high quality p-type ZnTe single crystals with low dislocation densities of the level of 2000 cm-2 grown by the vertical gradient freezing (VGF) method and the suppression of as compensating point defects by low temperature annealing with covering the surface of the substrates by the deposition of n-type dopant, Al. The thermal diffusion coefficient and the activation energy of Al were determined from the pn interface observed by scanning electron spectroscopy (SEM). The formation of the intrinsic pn junctions was confirmed from the electron-beam induced current (EBIC) observation and I-V measurement. The bright 550 nm electroluminescence (EL) from these pn-junctions was reproducibly observed under room light at room temperature, with the lifetime exceeding 1000 hrs.
Osamu ODA Takayuki INOUE Yoji SEKI Akihiro WAKAHARA Akira YOSHIDA Satoshi KURAI Yoichi YAMADA Tsunemasa TAGUCHI
In this paper, the recent development of GaN bulk substrates is reviewed. Among various works on HVPE thick epitaxial growth, the largest free-standing GaN substrates upto 34 cm2 has been first obtained by the HVPE method using NGO substrates, whose lattice constant has a good matching with that of GaN. For developing larger GaN substrates with lower production cost, the ultra-high pressure solution growth method is being developed not only in Poland but also in Japan under "The Light for the 21st Century" national project.