1-4hit |
The performance of multiuser multiple-input single-output (MU-MISO) systems is not only affected by small-scale multipath fading but also by large-scale fading (i.e., shadowing) and path loss. In this paper, we concentrate on the sum rate distribution of MU-MISO systems employing linear zero-forcing beamforming, accounting for both multipath fading and shadowing effects, as well as spatial correlation at the transmit and receiver sides. In particular, we consider the classical spatially correlated lognormal model and propose closed-form bounds on the distribution of the achievable sum rates in MU-MISO systems. With the help of these bounds, we derive a relationship between the interuser distance and sum rate corresponding to 10% of the cumulative distribution function under different environmental conditions. A practical conclusion from our results based on the considered system is that the effect of spatially correlated shadowing can be considered to be independent when the interuser distance is approximately five times the shadowing correlation distance. Furthermore, a detailed analysis of the effects of composite channel attenuation consisting of multipath fading and shadowing is also provided.
Ou ZHAO Lin SHAN Wei-Shun LIAO Mirza GOLAM KIBRIA Huan-Bang LI Kentaro ISHIZU Fumihide KOJIMA
Large-scale distributed antenna systems (LS-DASs) are gaining increasing interest and emerging as highly promising candidates for future wireless communications. To improve the user's quality of service (QoS) in these systems, this study proposes a user cooperation aided clustering approach based on device-centric architectures; it enables multi-user multiple-input multiple-output transmissions with non-reciprocal setups. We actively use device-to-device communication techniques to achieve the sharing of user information and try to form clusters on user side instead of the traditional way that performs clustering on base station (BS) side in data offloading. We further adopt a device-centric architecture to break the limits of the classical BS-centric cellular structure. Moreover, we derive an approximate expression to calculate the user rate for LS-DASs with employment of zero-forcing precoding and consideration of inter-cluster interference. Numerical results indicate that the approximate expression predicts the user rate with a lower computational cost than is indicated by computer simulation, and the proposed approach provides better user experience for, in particular, the users who have unacceptable QoS.
In order to verify the channel sum-rate improvement by multi-user multiple-input multiple-output (MU-MIMO) transmission in distributed antenna systems (DASs), we investigate and compare the characteristics of channel sum-rates in both centralized antenna systems (CASs) and DASs under the effects of path loss, spatially correlated shadowing, correlated multi-path fading, and inter-cell interference. In this paper, we introduce two different types of functions to model the shadowing, auto-correlation and cross-correlation, and a typical exponential decay function to model the multi-path fading correlation. Thus, we obtain the distribution of the channel sum-rate and investigate its characteristics. Computer simulation results indicate that DAS can improve the performance of the channel sum-rate compared to CAS, even in the case under consideration. However, this improvement decreases as interference power increases. Moreover, the decrease in the channel sum-rate due to the increase in the interference power becomes slow under the effect of shadowing correlation. In addition, some other analyses on the shadowing correlation that occurs on both the transmit and receiver sides are provided. These analysis results show that the average channel sum-rate in a DAS without inter-cell interference considerably decreases because of the shadowing correlation. In contrast, there appears to be no change in the CAS. Furthermore, there are two different types of sum-rate changes in a DAS because of the difference in shadowing auto-correlation and cross-correlation.
Distributed antenna systems (DASs) combined with multi-user multiple-input multiple-output (MU-MIMO) transmission techniques have recently attracted significant attention. To establish MU-MIMO DASs that have wide service areas, the use of a dynamic clustering scheme (CS) is necessary to reduce computation in precoding. In the present study, we propose a simple method for dynamic clustering to establish a single cell large-scale MU-MIMO DAS and investigate its performance. We also compare the characteristics of the proposal to those of other schemes such as exhaustive search, traditional location-based adaptive CS, and improved norm-based CS in terms of sum rate improvement. Additionally, to make our results more universal, we further introduce spatial correlation to the considered system. Computer simulation results indicate that the proposed CS for the considered system provides better performance than the existing schemes and can achieve a sum rate close to that of exhaustive search but at a lower computational cost.