1-4hit |
Ying-pei LIN Chen HE Ling-ge JIANG Di HE
A sensing efficiency optimization scheme based on two-stage spectrum sensing that maximizes the achievable throughput of the secondary network and minimizes the average sensing time is proposed in this paper. A selection method for the threshold is proposed and proved to ensure optimal sensing performance. An effective iterative algorithm is presented to solve the constructed efficiency optimization problem.
Pei LI Haiyang ZHANG Fan CHU Wei WU Juan ZHAO Baoyun WANG
This paper proposes a sampling strategy for bandlimited graph signals over perturbed graph, in which we assume the edge between any pair of the nodes may be deleted randomly. Considering the mismatch between the true graph and the presumed graph, we derive the mean square error (MSE) of the reconstructed bandlimited graph signals. To minimize the MSE, we propose a greedy-based algorithm to obtain the optimal sampling set. Furthermore, we use Neumann series to avoid the pseudo-inverse computing. An efficient algorithm with low-complexity is thus proposed. Finally, numerical results show the superiority of our proposed algorithms over the other existing algorithms.
Dongpei LIU Hengzhu LIU Botao ZHANG Jianfeng ZHANG Shixian WANG Zhengfa LIANG
High-performance FFT processor is indispensable for real-time OFDM communication systems. This paper presents a CORDIC based design of variable-length FFT processor which can perform various FFT lengths of 64/128/256/512/1024/2048/4096/8192-point. The proposed FFT processor employs memory based architecture in which mixed radix 4/2 algorithm, pipelined CORDIC, and conflict-free parallel memory access scheme are exploited. Besides, the CORDIC rotation angles are generated internally based on the transform of butterfly counter, which eliminates the need of ROM making it memory-efficient. The proposed architecture has a lower hardware complexity because it is ROM-free and with no dedicated complex multiplier. We implemented the proposed FFT processor and verified it on FPGA development platform. Additionally, the processor is also synthesized in 0.18 µm technology, the core area of the processor is 3.47 mm2 and the maximum operating frequency can be up to 500 MHz. The proposed FFT processor is better trade off performance and hardware overhead, and it can meet the speed requirement of most modern OFDM system, such as IEEE 802.11n, WiMax, 3GPP-LTE and DVB-T/H.
Ying-pei LIN Chen HE Ling-ge JIANG Di HE
A spectrum sensing scheme for cognitive radio that includes coarse and fine sensing stages based on cyclostationarity is proposed in this paper. The cyclostationary feature detection (CFD) based on a single cyclic frequency (SCF) is used in the coarse sensing stage and that based on multiple cyclic frequencies (MCF) is employed in the fine sensing stage. Whether the fine sensing stage is performed or not is decided by comparing the statistic constructed in the coarse sensing stage with two thresholds. Theoretical analyses and simulation results show that the proposed sensing scheme has superior sensing performance and needs shorter sensing time.