1-2hit |
Ping GUO Zhenjiang MIAO Xiao-Ping ZHANG Zhe WANG
This paper discusses the task of human action detection. It requires not only classifying what type the action of interest is, but also finding actions' spatial-temporal locations in a video. The novelty of this paper lies on two significant aspects. One is to introduce a new graph based representation for the search space in a video. The other is to propose a novel sub-volume search method by Minimum Cycle detection. The proposed method has a low computation complexity while maintaining a high action detection accuracy. It is evaluated on two challenging datasets which are captured in cluttered backgrounds. The proposed approach outperforms other state-of-the-art methods in most situations in terms of both Precision-Recall values and running speeds.
Xiuping GUO Genke YANG Zhiming WU Zhonghua HUANG
In this paper, we propose a hybrid fine-tuned multi-objective memetic algorithm hybridizing different solution fitness evaluation methods for global exploitation and exploration. To search across all regions in objective space, the algorithm uses a widely diversified set of weights at each generation, and employs a simulated annealing to optimize each utility function. For broader exploration, a grid-based technique is adopted to discover the missing nondominated regions on existing tradeoff surface, and a Pareto-based local perturbation is performed to reproduce incrementing solutions trying to fill up the discontinuous areas. Additional advanced feature is that the procedure is made dynamic and adaptive to the online optimization conditions based on a function of improvement ratio to obtain better stability and convergence of the algorithm. Effectiveness of our approach is shown by applying it to multi-objective 0/1 knapsack problem (MOKP).