1-4hit |
Qingping YU You ZHANG Renze LUO Longye WANG Xingwang LI
Polarization-adjusted convolutional (PAC) codes have better error-correcting performance than polar codes mostly because of the improved weight distribution brought by the convolutional pre-transformation. In this paper, we propose the parity check PAC (PC-PAC) codes to further improve error-correcting performance of PAC codes. The design principle is to establish parity check functions between bits with distinct row weights, such that information bits of lower reliability are re-protected by the PC relation. Moreover, an algorithm to select which bits to be involved in parity-check functions is also proposed to make sure that the constructed codes have fewer minimum-weight codewords. Simulation results show that the proposed PC-PAC codes can achieve nearly 0.2dB gain over PAC codes at frame error rate (FER) about 10-3 codes.
Qingping YU You ZHANG Zhiping SHI Xingwang LI Longye WANG Ming ZENG
In this letter, a deep neural network (DNN) aided joint source-channel (JSCC) decoding scheme is proposed for polar codes. In the proposed scheme, an integrated factor graph with an unfolded structure is first designed. Then a DNN aided flooding belief propagation decoding (FBP) algorithm is proposed based on the integrated factor, in which both source and channel scaling parameters in the BP decoding are optimized for better performance. Experimental results show that, with the proposed DNN aided FBP decoder, the polar coded JSCC scheme can have about 2-2.5 dB gain over different source statistics p with source message length NSC = 128 and 0.2-1 dB gain over different source statistics p with source message length NSC = 512 over the polar coded JSCC system with existing BP decoder.
Longye WANG Chunlin CHEN Xiaoli ZENG Houshan LIU Lingguo KONG Qingping YU Qingsong WANG
Spatial modulation (SM) is a type of multiple-input multiple-output (MIMO) technology that provides several benefits over traditional MIMO systems. SM-MIMO is characterized by its unique transmission principle, which results in lower costs, enhanced spectrum utilization, and reduced inter-channel interference. To optimize channel estimation performance over frequency-selective channels in the spatial modulation system, cross Z-complementary pairs (CZCPs) have been proposed as training sequences. The zero correlation zone (ZCZ) properties of CZCPs for auto-correlation sums and cross-correlation sums enable them to achieve optimal channel estimation performance. In this paper, we systematically construct CZCPs based on binary Golay complementary pairs and binary Golay complementary pairs via Turyn’s method. We employ a special matrix operation and concatenation method to obtain CZCPs with new lengths 2M + N and 2(M + L), where M and L are the lengths of binary GCP, and N is the length of binary GCP via Turyn’s method. Further, we obtain the perfect CZCP with new length 4N and extend the lengths of CZCPs.
Longye WANG Houshan LIU Xiaoli ZENG Qingping YU
This letter presented several new constructions of complementary sets (CSs) with flexible sequence lengths using matrix transformations. The constructed CSs of size 4 have different lengths, namely N + L and 2N + L, where N and L are the lengths for which complementary pairs exist. Also, presented CSs of size 8 have lengths N + P, P + Q and 2P + Q, where N is length of complementary pairs, P and Q are lengths of CSs of size 4 exist. The achieved designs can be easily extended to a set size of 2n+2 by recursive method. The proposed constructions generalize some previously reported constructions along with generating CSs under fewer constraints.