1-3hit |
Seolah JANG Sandi RAHMADIKA Sang Uk SHIN Kyung-Hyune RHEE
A private decentralized e-health environment, empowered by blockchain technology, grants authorized healthcare entities to legitimately access the patient's medical data without relying on a centralized node. Every activity from authorized entities is recorded immutably in the blockchain transactions. In terms of privacy, the e-health system preserves a default privacy option as an initial state for every patient since the patients may frequently customize their medical data over time for several purposes. Moreover, adjustments in the patient's privacy contexts are often solely from the patient's initiative without any doctor or stakeholders' recommendation. Therefore, we design, implement, and evaluate user-defined data privacy utilizing nudge theory for decentralized e-health systems named PDPM to tackle these issues. Patients can determine the privacy of their medical records to be closed to certain parties. Data privacy management is dynamic, which can be executed on the blockchain via the smart contract feature. Tamper-proof user-defined data privacy can resolve the dispute between the e-health entities related to privacy management and adjustments. In short, the authorized entities cannot deny any changes since every activity is recorded in the ledgers. Meanwhile, the nudge theory technique supports providing the best patient privacy recommendations based on their behaviour activities even though the final decision rests on the patient. Finally, we demonstrate how to use PDPM to realize user-defined data privacy management in decentralized e-health environments.
Kang Woo CHO Byeong-Gyu JEONG Sang Uk SHIN
The continuous development of the mobile computing environment has led to the emergence of fintech to enable convenient financial transactions in this environment. Previously proposed financial identity services mostly adopted centralized servers that are prone to single-point-of-failure problems and performance bottlenecks. Blockchain-based self-sovereign identity (SSI), which emerged to address this problem, is a technology that solves centralized problems and allows decentralized identification. However, the verifiable credential (VC), a unit of SSI data transactions, guarantees unlimited right to erasure for self-sovereignty. This does not suit the specificity of the financial transaction network, which requires the restriction of the right to erasure for credit evaluation. This paper proposes a model for VC generation and revocation verification for credit scoring data. The proposed model includes double zero knowledge - succinct non-interactive argument of knowledge (zk-SNARK) proof in the VC generation process between the holder and the issuer. In addition, cross-revocation verification takes place between the holder and the verifier. As a result, the proposed model builds a trust platform among the holder, issuer, and verifier while maintaining the decentralized SSI attributes and focusing on the VC life cycle. The model also improves the way in which credit evaluation data are processed as VCs by granting opt-in and the special right to erasure.
This paper proposes a new selective encryption scheme and a key management scheme for layered access control of H.264/SVC. This scheme encrypts three domains in hierarchical layers using different keys: intra prediction modes, motion vector difference values and sign bits of texture data. The proposed scheme offers low computational complexity, low bit-overhead, and format compliance by utilizing the H.264/SVC structure. It provides a high encryption efficiency by encrypting domains selectively, according to each layer type in the enhancement-layer. It also provides confidentiality and implicit authentication using keys derived in the proposed key management scheme for encryption. Simulation results show the effectiveness of the proposed scheme.