1-2hit |
Gye-Tae GIL Seong-Choon LEE Dong-Hoi KIM
This paper presents a novel dynamic subchannel allocation scheme that can improve the cell capacity by coordinating the intercell interference (ICI) in a cellular orthogonal frequency division multiple access (OFDMA) system. The proposed scheme mitigates the ICI by adopting the virtual cell concept and improves the frequency reuse factor through subchannel reuse among different virtual cells. In particular, each virtual cell is assigned a primary and a secondary subchannel group, and each sector base station (BSs) allocates the subchannel resulting in the least ICI in probability out of the candidate subchannels to the mobile stations, dynamically searching from its primary group and then secondary group. In addition, an optional use of pico-cell overlay at the intersection of the virtual cells is also proposed to enhance the fairness of the proposed scheme with the BS-MS distance. Through computer simulation, it is shown that the proposed scheme has the advantages of improved cell capacity and fairness compared to the conventional schemes.
This paper considers the design of quadrature amplitude modulation (QAM) transceivers for fixed wireless communications. We propose the use of power control in the QAM transmitter (Tx) to obtain BER performance robust to fading. The gain of the Tx is adaptively adjusted to keep the power of the received signal nearly constant despite of the short term fading and the second multipath. The BER performance of the proposed scheme is analytically evaluated in fixed wireless channels with flat fading and frequency selective fading. Analytic and simulation results show that the use of power control in the Tx can provide the BER performance only about 1 dB inferior to that in additive white Gaussian noise (AWGN) channel.