1-3hit |
Hadi HADIZADEH Shahriar BARADARAN SHOKOUHI
In this paper a novel method for the purpose of random texture defect detection using a collection of 1-D HMMs is presented. The sound textural content of a sample of training texture images is first encoded by a compressed LBP histogram and then the local patterns of the input training textures are learned, in a multiscale framework, through a series of HMMs according to the LBP codes which belong to each bin of this compressed LBP histogram. The hidden states of these HMMs at different scales are used as a texture descriptor that can model the normal behavior of the local texture units inside the training images. The optimal number of these HMMs (models) is determined in an unsupervised manner as a model selection problem. Finally, at the testing stage, the local patterns of the input test image are first predicted by the trained HMMs and a prediction error is calculated for each pixel position in order to obtain a defect map at each scale. The detection results are then merged by an inter-scale post fusion method for novelty detection. The proposed method is tested with a database of grayscale ceramic tile images.
Gholamreza AKBARIZADEH Gholam Ali REZAI-RAD Shahriar BARADARAN SHOKOUHI
A new method of segmentation for Synthetic Aperture Radar (SAR) images using the skewness wavelet energy has been presented. The skewness is the third order cumulant which measures the local texture along the region-based active contour. Nonlinearity in intensity inhomogeneities often occur in SAR images due to the speckle noise. In this paper we propose a region-based active contour model that is able to use the intensity information in local regions and to cope with the speckle noise and nonlinear intensity inhomogeneity of SAR images. We use a wavelet coefficients energy distribution to analyze the SAR image texture in each sub-band. A fitting energy called skewness wavelet energy is defined in terms of a contour and a functional so that, the regions and their interfaces will be modeled by level set functions. A functional relationship has been calculated on these level sets in terms of the third order cumulant, from which an energy minimization is derived. Minimizing the calculated functions derives the optimal segmentation based on the texture definitions. The results of the implemented algorithm on the test images from the Radarsat SAR images of agricultural and urban regions show a desirable performance of the proposed method.
M. Mahdi GHAZAEI ARDAKANI Shahriar BARADARAN SHOKOUHI
A new adaptive model based on fuzzy integrals has been presented and used for combining three well-known methods, Eigenface, Fisherface and SOMface, for face classification. After training the competence estimation functions, the adaptive mechanism enables our system the filtering of unsure judgments of classifiers for a specific input. Comparison with classical and non-adaptive approaches proves the superiority of this model. Also we examined how these features contribute to the combined result and whether they can together establish a more robust feature.