1-4hit |
Yesheng GAO Hui SHENG Kaizhi WANG Xingzhao LIU
A signal-model-based SAR image formation algorithm is proposed in this paper. A model is used to describe the received signal, and each scatterer can be characterized by a set of its parameters. Two parameter estimation methods via atomic decomposition are presented: (1) applying 1-D matching pursuit to azimuthal projection data; (2) applying 2-D matching pursuit to raw data. The estimated parameters are mapped to form a SAR image, and the mapping procedure can be implemented under application guidelines. This algorithm requires no prior information about the relative motion between the platform and the target. The Cramer-Rao bounds of parameter estimation are derived, and the root mean square errors of the estimates are close to the bounds. Experimental results are given to validate the algorithm and indicate its potential applications.
Yu ZHAO Sheng GAO Patrick GALLINARI Jun GUO
It inevitably comes out information overload problem with the increasing available data on e-commence websites. Most existing approaches have been proposed to recommend the users personal significant and interesting items on e-commence websites, by estimating unknown rating which the user may rate the unrated item, i.e., rating prediction. However, the existing approaches are unable to perform user prediction and item prediction, since they just treat the ratings as real numbers and learn nothing about the ratings' embeddings in the training process. In this paper, motivated by relation prediction in multi-relational graph, we propose a novel embedding model, namely RPEM, to solve the problem including the tasks of rating prediction, user prediction and item prediction simultaneously for recommendation systems, by learning the latent semantic representation of the users, items and ratings. In addition, we apply the proposed model to cross-domain recommendation, which is able to realize recommendation generation in multiple domains. Empirical comparison on several real datasets validates the effectiveness of the proposed model. The data is available at https://github.com/yuzhaour/da.
Yu ZHAO Sheng GAO Patrick GALLINARI Jun GUO
Knowledge graph (KG) embedding aims at learning the latent semantic representations for entities and relations. However, most existing approaches can only be applied to KG completion, so cannot identify relations including unseen entities (or Out-of-KG entities). In this paper, motivated by the zero-shot learning, we propose a novel model, namely JointE, jointly learning KG and entity descriptions embedding, to extend KG by adding new relations with Out-of-KG entities. The JointE model is evaluated on entity prediction for zero-shot embedding. Empirical comparisons on benchmark datasets show that the proposed JointE model outperforms state-of-the-art approaches. The source code of JointE is available at https://github.com/yzur/JointE.
Farshid HAJATI Abolghasem A. RAIE Yongsheng GAO
For the 3D face recognition numerous methods have been proposed, but little attention has been given to the local-based representation for the texture map of the 3D models. In this paper, we propose a novel 3D face recognition approach based on locally extracted Geodesic Pseudo Zernike Moment Array (GPZMA) of the texture map when only one exemplar per person is available. In the proposed method, the function of the PZM is controlled by the geodesic deformations to tackle the problem of face recognition under the expression and pose variations. The feasibility and effectiveness investigation for the proposed method is conducted through a wide range of experiments using publicly available BU-3DFE and Bosphorus databases including samples with different expression and pose variations. The performance of the proposed method is compared with the performance of three state-of-the-art benchmark approaches. The encouraging experimental results demonstrate that the proposed method achieves much higher accuracy than the benchmarks in single-model databases.