Author Search Result

[Author] Shih-Jen YANG(4hit)

1-4hit
  • QFB Low-Delay Design Satisfying Perfect-Reconstruction

    Her-Chang CHAO  Shih-Jen YANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E89-A No:1
      Page(s):
    316-320

    In this letter, we present a new numerical design method for 2-D FIR quincunx filter banks (QFB) with low-delay, equiripple magnitude response, and perfect reconstruction (PR). The necessary conditions for the system delay of QFB are derived. The dual affine scaling variant of Karmarkar's algorithm is employed to minimize the peak ripples of analysis filters, and a linearization scheme is introduced to satisfy the PR constraint for QFB. We have included several simulation examples to show the efficacy of this proposed design technique.

  • Use Channel Reconfiguration Technique to Improve the Spatial Multiplexing Gain of MIMO Systems

    Yung-Yi WANG  Shih-Jen YANG  Jiunn-Tsair CHEN  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2651-2658

    Multiple-input-multiple-output (MIMO) wireless systems can not always have full spatial multiplexing gain due to the channel correlation problem caused by various factors such as the coupled antenna elements, and the key-hole effect of the propagation environment. In this paper, we proposed a channel reconfiguration technique to combat the rank deficiency problem of the involved MIMO wireless channels that can not afford high-order multiplexing gains. In the proposed approach, each mobile station can simultaneously receive several independent data streams from multiple base stations through a set of MMSE-based receive beamformers to suppress the multiple access interferences. Making use of the receive beamforming, which virtually produce the effect of a single antenna at each receive mobile, makes the transmit base station possible to reconfigure the MIMO downlink channel and then pre-cancel the co-channel interferences. The proposed signal processing mechanism that iteratively optimized the MMSE receive weights and the transmit precoders, which brings the reconfigured MIMO system about the high data throughput seen only with indoor MIMO systems having rich wireless channels. It is shown that as compared to the conventional MIMO system, the M4 system can achieve a significantly higher capacity which is proportional to the number of the linked base stations.

  • A Tree-Structured Blind Algorithm for Joint Parametric Channel Estimation and Non-coherent Data Detection in an OFDM-CDMA Wireless System with Antenna Arrays

    Yung-Yi WANG  Shih-Jen YANG  Jiunn-Tsair CHEN  

     
    PAPER-OFDM/CDMA

      Vol:
    E90-A No:11
      Page(s):
    2377-2387

    A blind joint parametric channel estimation and non-coherent data detection algorithm is proposed for the downlink of an orthogonal-frequency-division-multiplexing code-division-multiple-access (OFDM-CDMA) system with multiple-input-multiple-output (MIMO) antenna arrays. To reduce the computational complexity, we first develop a tree-structured algorithm to estimate high dimensional parameters predominantly describing the involved multipath channels by employing several stages of low dimensional parameter estimation algorithms. In the tree structure, to exploit the space-time distribution of the receive multipath signals, spatial beamformers and spectral filters are adopted for clustered-multipath grouping and path isolation. In conjunction with the multiple access interference (MAI) suppression techniques, the proposed tree architecture algorithm jointly estimates the direction of arrivals, propagation delays, carrier frequency offsets and fading amplitudes of the downlink wireless channels in a MIMO OFDM-CDMA system. With the outputs of the tree architecture, the signals of interest can then be naturally detected with a path-wise maximum ratio combining scheme.

  • Minimax Design of Two-Dimensional FIR Linear-Phase Quincunx Filter Banks Satisfying Perfect Reconstruction

    Her-Chang CHAO  Bin-Chang CHIEU  Shih-Jen YANG  Ju-Hong LEE  

     
    PAPER-Digital Signal Processing

      Vol:
    E81-A No:11
      Page(s):
    2370-2382

    In this paper, we present a numerical design method for two-dimensional (2-D) FIR linear-phase (LP) quincunx filter banks (QFB) with equiripple magnitude response and perfect reconstruction (PR). The necessary conditions for the filter length of analysis filters are derived. A dual affine scaling variant (DASV) of Karmarkar's algorithm is employed to minimize the peak ripples of analysis filters and an approximation scheme is introduced to satisfy the PR constraint for the 2-D filter banks (FB). The simulation examples are included to show the effectiveness of this proposed design technique.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.