Author Search Result

[Author] Shingo SUWA(2hit)

1-2hit
  • Radio Link Capacity Comparison between MC/DS-CDMA and MC-CDMA in Reverse Link Broadband Wireless Access

    Shingo SUWA  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-A No:7
      Page(s):
    1645-1655

    This paper compares the radio link capacity between multi-carrier/DS-CDMA (MC/DS-CDMA) and multi-carrier CDMA (MC-CDMA) for reverse-link broadband packet wireless access taking into consideration: the asynchronous signal reception at the receiver; the path timing or symbol timing detection of all major subject factors; and the channel estimation error. Simulation results show that although the influence of the asynchronous signal reception on the packet error rate (PER) performance in MC-CDMA is slight, the degradation caused by the channel estimation error in MC-CDMA is severe compared to that caused by the path timing detection error in MC/DS-CDMA. Consequently, the required average received signal energy per bit-to-background noise spectrum density ratio (Eb/N0) at the average PER of 10-2 in MC/DS-CDMA is reduced by approximately 4.5 dB compared to that in MC-CDMA assuming a 12-path exponential decayed Rayleigh fading channel. Furthermore, the number of accommodated users in MC/DS-CDMA is 2.5 fold greater than that in MC-CDMA employing two-branch antenna diversity reception. Therefore, we conclude that MC/DS-CDMA is more appropriate than MC-CDMA for the reverse link broadband packet wireless access, and that it has advantageous features such as an inherently much lower peak-to-average power ratio compared to MC-CDMA, which accompanies a high peak-to-average power ratio causing an increase in the back-off of the power amplifier.

  • Optimum Bandwidth per Sub-Carrier of Multicarrier/DS-CDMA for Broadband Packet Wireless Access in Reverse Link

    Shingo SUWA  Hiroyuki ATARASHI  Sadayuki ABETA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E85-A No:7
      Page(s):
    1624-1634

    This paper elucidates the optimum bandwidth per sub-carrier in the reverse link for multicarrier (MC)/DS-CDMA using a 10 to 80-MHz bandwidth in a multipath fading channel with numerous resolved multipaths, taking into account all major effects, i.e., the improvement in the Rake time diversity effect and the degradation in the path search and the channel estimation due to multipath interference (MPI). In the paper, we assume a broadband channel model with the maximum delay time of up to approximately 1 µsec simulating a microcell with the radius of less than 1 km in an urban area. The simulation results clarify that the improvement in the radio link performance is almost saturated at a bandwidth greater than approximately 40 MHz when the spreading factor of the channel is SF=32, and the best performance is achieved at the bandwidth of approximately 20-40 MHz when SF=4, employing two-branch antenna diversity reception (an average equal power delay profile and an exponential decay power delay profile are assumed, where the number of multipaths is changed from 12 to 48 for both profiles). This is generated by the tradeoff between the improvement in the Rake time diversity effect and the increased MPI in addition to the degradation in accuracy of the path search and channel estimation associated with a lower average received signal-to-interference plus background noise power ratio. Therefore, we conclude that MC/DS-CDMA, where each sub-carrier has the bandwidth of approximately 20-40 MHz, is one of the most promising candidates for broadband packet wireless access in the reverse link.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.