1-6hit |
Mohammad AMINUL HAQ Mitsuji MATSUMOTO Jacir L. BORDIM Shinsuke TANAKA
In this paper we present a network layer based admission control and simple class based service differentiation model to support QoS in mobile ad hoc network. Our distributed admission control procedure works along with the route finding phase of reactive routing protocols for mobile ad hoc network (AODV, DSR etc). We also propose a simple class based distributed service differentiation system to support QoS once a traffic is admitted by our admission control mechanism. The proposed service differentiation is based on DiffServ model and includes modifications like configuration of each node with edge and core functionality, dynamic selection of edge/core functionality, use of minimal and simple classes. Simulation results show that our system allows seven times more real time traffic in the network than the proposed QoS for AODV model while satisfying the demanded end-to-end delay and providing low jitter.
Tetsuro UEDA Shinsuke TANAKA Dola SAHA Siuli ROY Somprakash BANDYOPADHYAY
Use of directional antenna in the context of ad hoc wireless networks can largely reduce radio interference, thereby improving the utilization of wireless medium. Our major contribution in this paper is to devise a MAC protocol that exploits the advantages of directional antenna in ad hoc networks for improved system performance. In this paper, we have illustrated a MAC protocol for ad hoc networks using directional antenna with the objective of effective utilization of the shared wireless medium. In order to implement effective MAC protocol in this context, a node should know how to set its transmission direction to transmit a packet to its neighbors and to avoid transmission in other directions where data communications are already in progress. In this paper, we are proposing a receiver-centric approach for location tracking and MAC protocol, so that, nodes become aware of its neighborhood and also the direction of the nodes for communicating directionally. A node develops its location-awareness from these neighborhood-awareness and direction-awareness. In this context, researchers usually assume that the gain of directional antennas is equal to the gain of corresponding omni-directional antenna. However, for a given amount of input power, the range R with directional antenna will be much larger than that using omni-directional antenna. In this paper, we also propose a two level transmit power control mechanism in order to approximately equalize the transmission range R of an antenna operating at omni-directional and directional mode. This will not only improve medium utilization but also help to conserve the power of the transmitting node during directional transmission. Our proposed directional MAC protocol can be effective in both ITS (Intelligent Transportation System), which we simulate in String and Parallel Topology, and in any community network, which we simulate in Random Topology. The performance evaluation on QualNet network simulator clearly indicates the efficiency of our protocol.
Tetsuro UEDA Shinsuke TANAKA Siuli ROY Dola SAHA Somprakash BANDYOPADHYAY
Quality of Service (QoS) provisioning is a new but challenging research area in the field of Mobile Ad hoc Network (MANET) to support multimedia data communication. However, the existing QoS routing protocols in ad hoc network did not consider a major aspect of wireless environment, i.e., mutual interference. Interference between nodes belonging to two or more routes within the proximity of one another causes Route Coupling. This can be avoided by using zone-disjoint routes. Two routes are said to be zone disjoint if data communication over one path does not interfere with the data communication along the other path. In this paper, we have proposed a scheme for supporting priority-based QoS in MANET by classifying the traffic flows in the network into different priority classes and giving different treatment to the flows belonging to different classes during routing so that the high priority flows will achieve best possible throughput. Our objective is to reduce the effect of coupling between routes used by high and low priority traffic by reserving zone of communication. The part of the network, used for high priority data communication, i.e, high priority zone, will be avoided by low priority data through the selection of a different route that is maximally zone-disjoint with respect to high priority zones and which consequently allows contention-free transmission of high priority traffic. The suggested protocol in our paper selects shortest path for high priority traffic and diverse routes for low priority traffic that will minimally interfere with high priority flows, thus reducing the effect of coupling between high and low priority routes. This adaptive, priority-based routing protocol is implemented on Qualnet Simulator using directional antenna to prove the effectiveness of our proposal. The use of directional antenna in our protocol largely reduces the probability of radio interference between communicating hosts compared to omni-directional antenna and improves the overall utilization of the wireless medium in the context of ad hoc wireless network through Space Division Multiple Access (SDMA).
Yohei SOBU Shinsuke TANAKA Yu TANAKA
Silicon photonics technology is a promising candidate for small form factor transceivers that can be used in data-center applications. This technology has a small footprint, a low fabrication cost, and good temperature immunity. However, its main challenge is due to the high baud rate operation for optical modulators with a low power consumption. This paper investigates an all-Silicon Mach-Zehnder modulator based on the lumped-electrode optical phase shifters. These phase shifters are driven by a complementary metal oxide semiconductor (CMOS) inverter driver to achieve a low power optical transmitter. This architecture improves the power efficiency because an electrical digital-to-analog converter (DAC) and a linear driver are not required. In addition, the current only flows at the time of data transition. For this purpose, we use a PIN-diode phase shifter. These phase shifters have a large capacitance so the driving voltage can be reduced while maintaining an optical phase shift. On the other hand, this study integrates a passive resistance-capacitance (RC) equalizer with a PIN-phase shifter to expand the electro-optic (EO) bandwidth of a modulator. Therefore, the modulation efficiency and the EO bandwidth can be optimized by designing the capacitor of the RC equalizer. This paper reviews the recent progress for the high-speed operation of an all-Si PIN-RC modulator. This study introduces a metal-insulator-metal (MIM) structure for a capacitor with a passive RC equalizer to obtain a wider EO bandwidth. As a result, this investigation achieves an EO bandwidth of 35.7-37 GHz and a 70 Gbaud NRZ operation is confirmed.
Goji NAKAGAWA Yutaka KAI Kyosuke SONE Setsuo YOSHIDA Shinsuke TANAKA Ken MORITO Susumu KINOSHITA
We have designed and fabricated a compact 4-array integrated SOA module using a novel parallel optical coupling scheme and polarization-insensitive built-in array isolators. We achieved ultra-high On/Off extinction ratio of more than 60 dB and low cross talk of better than -60 dB as well as high-isolation of over 47 dB in wide wavelength ranges. We also developed a wavelength-insensitive parallel optical coupling scheme and an efficient thermal dissipating structure for a 4-array SOA module. We applied these technologies into 4-array SOA module fabrication and demonstrated a uniform optical coupling with the loss variance of 1 dB over the 140-nm wavelength ranges. We also demonstrated simultaneous operation of 300 mA 4 channels with low thermal degradation of the module gain less than 1 dB.
Suhua TANG Bing ZHANG Masahiro WATANABE Shinsuke TANAKA
Many routing protocols have been proposed for mobile ad hoc networks. Among these protocols, the on-demand routing protocols are very attractive because they have low routing overhead. However, few of the existing on-demand routing protocols have considered the link heterogeneity, such as the different communication rate, different Packet Error Ratio (PER). As a result, the routes tend to have the shortest hop count and contain weak links, which usually provide low performance and are susceptible to breaks in the presence of mobility. In this paper, we analyze the existing on-demand routing protocols and propose a Link Heterogeneity Aware On-demand Routing (LHAOR) protocol, where the link quality and mobility are considered. Specifically, the Local Update (LU) is proposed and the link metric is inversely related with the Received Signal Strength Indicator (RSSI). By using the LU method and RSSI information, the routes adapt to the topology variation and link quality changes, and reach the local optimum quickly, which contains strong links and has a small metric. Simulation and experiment results show that our LHAOR protocol achieves much higher performance than the classical on-demand routing protocols.