1-3hit |
Rui MURAKAMI Shoichi HARA Kenichi OKADA Akira MATSUZAWA
In this paper we present a study on the design optimization of voltage-controlled oscillators. The phase noise of LC-type oscillators is basically limited by the quality factor of inductors. It has been experimentally shown that higher-Q inductors can be achieved at higher frequencies while the oscillation frequency is limited by parasitic capacitances. In this paper, the minimum transistor size and the degradation of the quality factor caused by a switched-capacitor array are analytically estimated, and the maximum oscillation frequency of VCOs is also derived from an equivalent circuit by considering parasitic capacitances. According to the analytical evaluation, the phase noise of a VCO using a 65 nm CMOS is 2 dB better than that of a 180 nm CMOS.
Shoichi HARA Rui MURAKAMI Kenichi OKADA Akira MATSUZAWA
The multiple-divide technique, using the multi-ratio frequency divider, has a possibility to improve FoM of VCO. This paper proposes a design optimization of LC-VCO using the multiple-divide technique. In the simulated results using 90-nm CMOS model parameters, the optimum frequency range, achieving better than -187.0 dBc/Hz of FoM, can be extended from 6.5-12.5 GHz to 1.5-12.5 GHz. The proposed multiple-divide technique can provide a lower phase-noise, lower power consumption, smaller layout area of LC-VCO.
Shoichi HARA Kenichi OKADA Akira MATSUZAWA
This paper proposes a novel wideband voltage-controlled oscillator (VCO) for multi-band transceivers. The proposed oscillator has a core VCO and a tuning-range extension circuit, which consists of an injection-locked frequency divider (ILFD) and flip flop dividers. The two-stage differential ILFD generates quadrature outputs and realizes two, three, four, and six of divide ratio with very wide output frequency range. The proposed circuit is implemented by using a 90 nm CMOS process, and the chip area is 250200 µm2. The measured result achieves continuous frequency tuning range of 9.3 MHz-to-5.7 GHz (199%) with -210 dBc/Hz of figure-of-merit (FoMT).