1-2hit |
Yiqing HUANG Qin LIU Shuijiong WU Zhewen ZHENG Takeshi IKENAGA
One fast inter mode decision algorithm is proposed in this paper. The whole algorithm is divided into two stages. In the pre-stage, by exploiting spatial and temporal information of encoded macrobocks (MBs), a skip mode early detection scheme is proposed. The homogeneity of current MB is also analyzed to filter out small inter modes in this stage. Secondly, during the block matching stage, a motion feature based inter mode decision scheme is introduced by analyzing the motion vector predictor's accuracy, the block overlapping situation and the smoothness of SAD (sum of absolute difference) value. Moreover, the rate distortion cost is checked in an early stage and we set some constraints to speed up the whole decision flow. Experiments show that our algorithm can achieve a speed up factor of up to 53.4% for sequences with different motion type. The overall bit increment and quality degradation is negligible compared with existing works.
Shuijiong WU Peilin LIU Yiqing HUANG Qin LIU Takeshi IKENAGA
H.264/AVC encoder employs rate control to adaptively adjust quantization parameter (QP) to enable coded video to be transmitted over a constant bit-rate (CBR) channel. In this topic, bit allocation is crucial since it is directly related with actual bit generation and the coding quality. Meanwhile, the rate-distortion-optimization (RDO) based mode-decision technique also affects performance a lot for the strong relation among mode, bits, and quality. This paper presents a multi-stage rate control scheme for R-D optimized H.264/AVC encoders under CBR video transmission. To enhance the precision of the complexity estimation and bit allocation, a frequency-domain parameter named mean-absolute-transform-difference (MATD) is adopted to represent frame and macroblock (MB) residual complexity. Second, the MATD ratio is utilized to enhance the accuracy of frame layer bit prediction. Then, by considering the bit usage status of whole sequence, a measurement combining forward and backward bit analysis is proposed to adjust the Lagrange multiplier λMODE on frame layer to optimize the mode decision for all MBs within the current frame. On the next stage, bits are allocated on MB layer by proposed remaining complexity analysis. Computed QP is further adjusted according to predicted MB texture bits. Simulation results show the PSNR improvement is up to 1.13 dB by using our algorithm, and the stress of output buffer control is also largely released compared with the recommended rate control in H.264/AVC reference software JM13.2.