Author Search Result

[Author] Shunsuke ONO(3hit)

1-3hit
  • Exploiting Group Sparsity in Nonlinear Acoustic Echo Cancellation by Adaptive Proximal Forward-Backward Splitting

    Hiroki KURODA  Shunsuke ONO  Masao YAMAGISHI  Isao YAMADA  

     
    PAPER

      Vol:
    E96-A No:10
      Page(s):
    1918-1927

    In this paper, we propose a use of the group sparsity in adaptive learning of second-order Volterra filters for the nonlinear acoustic echo cancellation problem. The group sparsity indicates sparsity across the groups, i.e., a vector is separated into some groups, and most of groups only contain approximately zero-valued entries. First, we provide a theoretical evidence that the second-order Volterra systems tend to have the group sparsity under natural assumptions. Next, we propose an algorithm by applying the adaptive proximal forward-backward splitting method to a carefully designed cost function to exploit the group sparsity effectively. The designed cost function is the sum of the weighted group l1 norm which promotes the group sparsity and a weighted sum of squared distances to data-fidelity sets used in adaptive filtering algorithms. Finally, Numerical examples show that the proposed method outperforms a sparsity-aware algorithm in both the system-mismatch and the echo return loss enhancement.

  • Image Restoration with Multiple Hard Constraints on Data-Fidelity to Blurred/Noisy Image Pair

    Saori TAKEYAMA  Shunsuke ONO  Itsuo KUMAZAWA  

     
    PAPER

      Pubricized:
    2017/06/14
      Vol:
    E100-D No:9
      Page(s):
    1953-1961

    Existing image deblurring methods with a blurred/noisy image pair take a two-step approach: blur kernel estimation and image restoration. They can achieve better and much more stable blur kernel estimation than single image deblurring methods. On the other hand, in the image restoration step, they do not exploit the information on the noisy image, or they require ad hoc tuning of interdependent parameters. This paper focuses on the image restoration step and proposes a new restoration method of using a blurred/noisy image pair. In our method, the image restoration problem is formulated as a constrained convex optimization problem, where data-fidelity to a blurred image and that to a noisy image is properly taken into account as multiple hard constraints. This offers (i) high quality restoration when the blurred image also contains noise; (ii) robustness to the estimation error of the blur kernel; and (iii) easy parameter setting. We also provide an efficient algorithm for solving our optimization problem based on the so-called alternating direction method of multipliers (ADMM). Experimental results support our claims.

  • Image Recovery by Decomposition with Component-Wise Regularization

    Shunsuke ONO  Takamichi MIYATA  Isao YAMADA  Katsunori YAMAOKA  

     
    PAPER-Image

      Vol:
    E95-A No:12
      Page(s):
    2470-2478

    Solving image recovery problems requires the use of some efficient regularizations based on a priori information with respect to the unknown original image. Naturally, we can assume that an image is modeled as the sum of smooth, edge, and texture components. To obtain a high quality recovered image, appropriate regularizations for each individual component are required. In this paper, we propose a novel image recovery technique which performs decomposition and recovery simultaneously. We formulate image recovery as a nonsmooth convex optimization problem and design an iterative scheme based on the alternating direction method of multipliers (ADMM) for approximating its global minimizer efficiently. Experimental results reveal that the proposed image recovery technique outperforms a state-of-the-art method.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.