1-2hit |
Soo Young SHIN Dong Hyuk WOO Jong Wook LEE Hong Seong PARK Wook Hyun KWON
In this paper, a coexistence mechanism between IEEE 802.15.4 and IEEE 802.11b, Active Channel Reservation for cOexiStence (ACROS), is proposed. The key idea underlining ACROS is to reserve the channel for IEEE 802.15.4 transmission, where IEEE 802.11 transmissions are forbidden. The request-to-send (RTS)/clear-to send (CTS) mechanism within IEEE 802.11 is used to reserve a channel. The proposed ACROS mechanism is implemented into a PC based prototype. The embedded version of ACROS is also developed to mitigate the timing drift problem in the PC-based ACROS. The efficiency of ACROS is shown using the throughput and packet error rate achieved in actual experiments.
Soo Young SHIN Hong Seong PARK Wook Hyun KWON
In this paper, the packet error rate (PER) of IEEE 802.15.4 under the interference of a saturated IEEE 802.11b network is evaluated using an analytic model when IEEE 802.15.4 and IEEE 802.11b coexist. The PER is obtained from the bit error rate (BER) and the collision time, where the BER is obtained from the signal-to-interference-plus-noise ratio. The analytic results are validated using simulations.