1-1hit |
Sufen ZHAO Rong PENG Meng ZHANG Liansheng TAN
It is of great importance to recommend collaborators for scholars in academic social networks, which can benefit more scientific research results. Facing the problem of data sparsity of co-author recommendation in academic social networks, a novel recommendation algorithm named HeteroRWR (Heterogeneous Random Walk with Restart) is proposed. Different from the basic Random Walk with Restart (RWR) model which only walks in homogeneous networks, HeteroRWR implements multiple random walks in a heterogeneous network which integrates a citation network and a co-authorship network to mine the k mostly valuable co-authors for target users. By introducing the citation network, HeteroRWR algorithm can find more suitable candidate authors when the co-authorship network is extremely sparse. Candidate recommenders will not only have high topic similarities with target users, but also have good community centralities. Analyses on the convergence and time efficiency of the proposed approach are presented. Extensive experiments have been conducted on DBLP and CiteSeerX datasets. Experimental results demonstrate that HeteroRWR outperforms state-of-the-art baseline methods in terms of precision and recall rate even in the case of incorporating an incomplete citation dataset.