Author Search Result

[Author] Tae Ho CHO(10hit)

1-10hit
  • Simulation Modeling of SAM Fuzzy Logic Controllers

    Hae Young LEE  Seung-Min PARK  Tae Ho CHO  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E93-D No:7
      Page(s):
    1984-1986

    This paper presents an approach to implementing simulation models for SAM fuzzy controllers without the use of external components. The approach represents a fuzzy controller as a composition of simple simulation models which involve only basic operations.

  • Fuzzy Adaptive Partitioning Method for the Statistical Filtering

    Sang Ryul KIM  Hae Young LEE  Tae Ho CHO  

     
    LETTER-Networks

      Vol:
    E91-D No:7
      Page(s):
    2065-2067

    This paper presents a fuzzy partitioning method that adaptively divides a global key pool into multiple partitions by a fuzzy logic in the statistical filtering-based sensor networks. Compared to the original statistical filtering scheme, the proposed method is more resilient against node compromise.

  • Location-Based Key Management Structure for Secure Group Communication in Wireless Sensor Networks

    Jin Myoung KIM  Tae Ho CHO  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E96-B No:9
      Page(s):
    2183-2189

    Many applications of wireless sensor networks (WSNs) require secure communication. The tree-based key management scheme, which is a symmetric key scheme, provides backward and forward secrecy. The sensor nodes in the communication group share a secret key for encrypting messages. When the sensor nodes are added to or evicted from the group, the group key has to be updated by sending rekeying messages. In this paper, we propose a method of key tree structure (KTS) generation by considering the addition and eviction ratio of sensor nodes to reduce the number of rekeying messages, which is influenced by the structure of the tree. For this, we define an extension of an existing tree structure such as a binary or ternary tree and generate KTS using an A* algorithm. To reduce the energy consumed by the message transmission, we also exploit genetic algorithm (GA) to build a secure communication group by considering the KTS. In the paper, we show the effectiveness of the proposed method compared with the existing structure via the simulation in terms of memory usage, the number of rekeying messages and energy consumption.

  • Key Index-Based Routing for Filtering False Event Reports in Wireless Sensor Networks

    Soo Young MOON  Tae Ho CHO  

     
    PAPER-Network

      Vol:
    E95-B No:9
      Page(s):
    2807-2814

    The wireless sensor network (WSN) is a technology that senses environmental information and provides appropriate services to users. There are diverse application areas for WSNs such as disaster prevention, military, and facility management. Despite the many prospective applications, WSN s are vulnerable to various malicious attacks. In false report attacks, a malicious attacker steals a few sensor nodes and obtains security materials such as authentication keys from the nodes. The attacker then injects false event reports to the network through the captured nodes. The injected false reports confuse users or deplete the limited energy of the nodes in the network. Many filtering schemes have been proposed to detect and remove false reports. In the statistical en route filtering (SEF) scheme, each node shares authentication keys selected from a global key pool. Due to the limited memory, each node is able to store only a small portion of the global key pool. Therefore, the routing paths of the event reports significantly affect the filtering (i.e., detecting) probability of false reports. In this paper, we propose a method to determine the routing paths of event reports both hop by hop and on demand at each node. In this method, each node chooses the next node on the path from the event source to the sink node based on the key indexes of its neighbor nodes. Experiments show that the proposed method is far more energy efficient than the SEF when the false traffic ratio (FTR) is ≥ 50% in the network.

  • A Scheme for Adaptively Countering Application Layer Security Attacks in Wireless Sensor Networks

    Hae Young LEE  Tae Ho CHO  

     
    PAPER-Network

      Vol:
    E93-B No:7
      Page(s):
    1881-1889

    In wireless sensor networks, adversaries can easily launch application layer attacks, such as false data injection attacks and false vote insertion attacks. False data injection attacks may drain energy resources and waste real world response efforts. False vote insertion attacks would prevent reporting of important information on the field. In order to minimize the damage from such attacks, several prevention based solutions have been proposed by researchers, but may be inefficient in normal condition due to their overhead. Thus, they should be activated upon detection of such attacks. Existing detection based solutions, however, does not address application layer attacks. This paper presents a scheme to adaptively counter false data injection attacks and false vote insertion attacks in sensor networks. The proposed scheme consists of two sub-units: one used to detect the security attacks and the other used to select efficient countermeasures against the attacks. Countermeasures are activated upon detection of the security attacks, with the consideration of the current network status and the attacks. Such adaptive countering approach can conserve energy resources especially in normal condition and provide reliability against false vote insertion attacks.

  • Fuzzy Adaptive Selection of Filtering Schemes for Energy Saving in Sensor Networks

    Hae Young LEE  Tae Ho CHO  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3346-3353

    Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes, with the goal of deceiving the base station or depleting the resources of forwarding nodes. Several research solutions have been recently proposed to detect and drop such forged reports during the forwarding process. Each design can provide the equivalent resilience in terms of node compromising. However, their energy consumption characteristics differ from each other. Thus, employing only a single filtering scheme for a network is not a recommendable strategy in terms of energy saving. In this paper, we propose a fuzzy-based adaptive filtering scheme selection method for energy saving. A fuzzy rule-based system is exploited to choose one of three filtering schemes by considering the false traffic ratio, the security threshold value, distance, and the detection power of the filtering scheme. The adaptive selection of the filtering schemes can conserve energy, and guarantee sufficient resilience.

  • A Multipath En-Route Filtering Method for Dropping Reports in Sensor Networks

    Mun Su KIM  Tae Ho CHO  

     
    LETTER-Networks

      Vol:
    E90-D No:12
      Page(s):
    2108-2109

    In this paper, we propose a multipath en-route filtering method to deal with the problems caused by black hole attacks and selective forwarding attacks. Our result shows that the method is more resilient to these problems up to a certain number of compromised nodes than the statistical en-route filtering scheme.

  • A Fuzzy Rule-Based Key Redistribution Method for Improving Security in Wireless Sensor Networks

    Jae Kwan LEE  Tae Ho CHO  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/07/27
      Vol:
    E101-B No:2
      Page(s):
    489-499

    Wireless Sensor Networks (WSNs) are randomly deployed in a hostile environment and left unattended. These networks are composed of small auto mouse sensor devices which can monitor target information and send it to the Base Station (BS) for action. The sensor nodes can easily be compromised by an adversary and the compromised nodes can be used to inject false vote or false report attacks. To counter these two kinds of attacks, the Probabilistic Voting-based Filtering Scheme (PVFS) was proposed by Li and Wu, which consists of three phases; 1) Key Initialization and assignment, 2) Report generation, and 3) En-route filtering. This scheme can be a successful countermeasure against these attacks, however, when one or more nodes are compromised, the re-distribution of keys is not handled. Therefore, after a sensor node or Cluster Head (CH) is compromised, the detection power and effectiveness of PVFS is reduced. This also results in adverse effects on the sensor network's lifetime. In this paper, we propose a Fuzzy Rule-based Key Redistribution Method (FRKM) to address the limitations of the PVFS. The experimental results confirm the effectiveness of the proposed method by improving the detection power by up to 13.75% when the key-redistribution period is not fixed. Moreover, the proposed method achieves an energy improvement of up to 9.2% over PVFS.

  • Fuzzy-Based Path Selection Method for Improving the Detection of False Reports in Sensor Networks

    Hae Young LEE  Tae Ho CHO  

     
    LETTER-Computation and Computational Models

      Vol:
    E92-D No:8
      Page(s):
    1574-1576

    This paper presents a fuzzy-based path selection method for improving the security level, in which each cluster chooses paths based on the detection power of false data and energy efficiency.

  • Optimized Fuzzy Adaptive Filtering for Ubiquitous Sensor Networks

    Hae Young LEE  Tae Ho CHO  

     
    PAPER-Network

      Vol:
    E94-B No:6
      Page(s):
    1648-1656

    In ubiquitous sensor networks, extra energy savings can be achieved by selecting the filtering solution to counter the attack. This adaptive selection process employs a fuzzy rule-based system for selecting the best solution, as there is uncertainty in the reasoning processes as well as imprecision in the data. In order to maximize the performance of the fuzzy system the membership functions should be optimized. However, the efforts required to perform this optimization manually can be impractical for commonly used applications. This paper presents a GA-based membership function optimizer for fuzzy adaptive filtering (GAOFF) in ubiquitous sensor networks, in which the efficiency of the membership functions is measured based on simulation results and optimized by GA. The proposed optimization consists of three units; the first performs a simulation using a set of membership functions, the second evaluates the performance of the membership functions based on the simulation results, and the third constructs a population representing the membership functions by GA. The proposed method can optimize the membership functions automatically while utilizing minimal human expertise.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.