Author Search Result

[Author] Taek-Soo KIM(3hit)

1-3hit
  • A Latchup-Free ESD Power Clamp Circuit with Stacked-Bipolar Devices for High-Voltage Integrated Circuits

    Jae-Young PARK  Jong-Kyu SONG  Chang-Soo JANG  San-Hong KIM  Won-Young JUNG  Taek-Soo KIM  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    671-675

    The holding voltage of high-voltage devices under the snapback breakdown condition has been known to be much smaller than the power supply voltage. Such characteristics cause high-voltage ICs to be susceptible to the transient latch-up failure in the practical system applications, especially when these devices are used as the ESD power clamp circuit. A new latchup-free design of the ESD power clamp circuit with stacked-bipolar devices is proposed and successfully verified in a 0.35 µm BCD (Bipolar-CMOS-DMOS) process to achieve the desired ESD level. The total holding voltage of the stacked-bipolar devices in the snapback breakdown condition can be larger than the power supply voltage.

  • On-Chip Charged Device Model ESD Protection Design Method Using Very Fast Transmission Line Pulse System for RF ICs

    Jae-Young PARK  Jong-Kyu SONG  Dae-Woo KIM  Chang-Soo JANG  Won-Young JUNG  Taek-Soo KIM  

     
    PAPER-Analog/RF Devices

      Vol:
    E93-C No:5
      Page(s):
    625-630

    An on-chip Charged Device Model (CDM) ESD protection method for RF ICs is proposed in a 0.13 µm RF process and evaluated by using very fast Transmission Line Pulse (vf-TLP) system. Key design parameters such as triggering voltage (Vt1) and the oxide breakdown voltage from the vf-TLP measurement are used to design input ESD protection circuits for a RF test chip. The characterization and the behavior of a Low Voltage Triggered Silicon Controlled Rectifier (SCR) which used for ESD protection clamp under vf-TLP measurements are also reported. The results measured by vf-TLP system showed that the triggering voltage decreased and the second breakdown current increased in comparison with the results measured by a standard 100 ns TLP system. From the HBM/ CDM testing, the RF test chip successfully met the requested RF ESD withstand level, HBM 1 kV, MM 100 V and CDM 500 V.

  • A Precision Floating-Gate Mismatch Measurement Technique for Analog Application

    Won-Young JUNG  Jong-Min KIM  Jin-Soo KIM  Taek-Soo KIM  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    780-785

    For analog applications, the Metal-Insulator-Metal (MIM) capacitance has to be measured at a much higher resolution than using the conventional methods, i.e. to a sub-femto level. A new robust mismatch measurement technique is proposed, which is more accurate and robust compared to the conventional Floating Gate Capacitance Measurement (FGCM) methods. A capacitance mismatching measurement methodology based on Vs is more stable than that based on Vf because the influence of pre-existing charge in the floating-gate can be cancelled in the slope of ΔVs/ΔVf based on Vs. The accuracy of this method is evaluated through silicon measurement in a 0.13 µm technology. It shows that, compared to the ideal value, the average of the new method are within 0.12% compared to 49.23% in conventional method while the standard deviation is within 0.15%.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.