1-4hit |
Masaaki FUJII Ji-Yun SEOL TaeYoung KIM JaeWeon CHO
A subarray signal processing scheme is described for a large-scale two-dimensional analog-digital hybrid beamformer to be used in quasi-millimeter-wave-band mobile communication systems. Multiple analog phased arrays direct their respective beams to multiple users, enabling space-division multiple access (SDMA). An iterative soft-input soft-output (SISO) multi-user detector recovers multi-user signals from subarray output signals corrupted by inter-user interference (IUI). In addition, a phased-array directivity control algorithm is derived based on inter-subarray signal phase-difference estimation from inter-beam-interference (IBI)-cancelled subarray output signals. Simulation results demonstrate that our proposed scheme achieves reduced hardware complexity, IUI-resistant multi-user signal detection, and IBI-resistant multi-user-tracking phased-array directivity control.
Hyunkyu YU Taeyoung KIM Jaeweon CHO Hokyu CHOI Dong Seek PARK Seong-Jun OH
This letter deals with coding and multiplexing strategies for DL/UL MAP transmission in IEEE 802.16m. Separate coding gives a better choice against the joint coding due to the individual users' link adaptation gain. As a multiplexing option, frequency-domain multiplexing outperforms time-domain one in the system-level performance thanks to its flexible power sharing capability between overhead channels and user traffic channels. Overall system-wide performance results are presented with the system level simulation for the various options.
Taeyoung KIM Sun-Yong KIM Eunchul YOON
In this letter, the diversity-multiplexing tradeoff (DMT) function for a special half-duplex dynamic decode and forward (DDF) relay protocol using two source-antennas, two destination-antennas, and more than two relay-antennas is derived. It is shown that the performance of the DDF relay protocol can be substantially improved by increasing the relay-antenna number, but only for low multiplexing gains.
Taeyoung KIM Kyunbyoung KO Youngju KIM Daesik HONG
This letter evaluates the performance of an uplink multicarrier-code division multiple access (MC-CDMA) system when the frequency offsets of all users are random variables and the frequency offset for the desired user is compensated. The analysis confirms that performance degradation due to frequency offset is negligible if the estimation error of normalized frequency offset for the desired user is less than 10-1.