Author Search Result

[Author] Takafumi KOSHINAKA(2hit)

1-2hit
  • Online Speaker Clustering Using Incremental Learning of an Ergodic Hidden Markov Model

    Takafumi KOSHINAKA  Kentaro NAGATOMO  Koichi SHINODA  

     
    PAPER-Speech and Hearing

      Vol:
    E95-D No:10
      Page(s):
    2469-2478

    A novel online speaker clustering method based on a generative model is proposed. It employs an incremental variant of variational Bayesian learning and provides probabilistic (non-deterministic) decisions for each input utterance, on the basis of the history of preceding utterances. It can be expected to be robust against errors in cluster estimation and the classification of utterances, and hence to be applicable to many real-time applications. Experimental results show that it produces 50% fewer classification errors than does a conventional online method. They also show that it is possible to reduce the number of speech recognition errors by combining the method with unsupervised speaker adaptation.

  • Committee-Based Active Learning for Speech Recognition

    Yuzo HAMANAKA  Koichi SHINODA  Takuya TSUTAOKA  Sadaoki FURUI  Tadashi EMORI  Takafumi KOSHINAKA  

     
    PAPER-Speech and Hearing

      Vol:
    E94-D No:10
      Page(s):
    2015-2023

    We propose a committee-based method of active learning for large vocabulary continuous speech recognition. Multiple recognizers are trained in this approach, and the recognition results obtained from these are used for selecting utterances. Those utterances whose recognition results differ the most among recognizers are selected and transcribed. Progressive alignment and voting entropy are used to measure the degree of disagreement among recognizers on the recognition result. Our method was evaluated by using 191-hour speech data in the Corpus of Spontaneous Japanese. It proved to be significantly better than random selection. It only required 63 h of data to achieve a word accuracy of 74%, while standard training (i.e., random selection) required 103 h of data. It also proved to be significantly better than conventional uncertainty sampling using word posterior probabilities.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.