1-2hit |
Yasuo YAMAGUCHI Toshiyuki OASHI Takahisa EIMORI Toshiaki IWAMATSU Shouichi MITAMOTO Katsuhiro SUMA Takahiro TSURUDA Fukashi MORISHITA Masakazu HIROSE Hideto HIDAKA Kazutami ARIMOTO Kazuyasu FUJISHIMA Yasuo INOUE Tadashi NISHIMURA Hirokazu MIYOSHI
SOI DRAM's are candidates for giga-bit scale DRAM's due to the inherent features of SOI structure, and are also desired to be used as low-voltage memories which will be used in portable systems in the forthcoming multimedia era. However, some drawbacks are also anticipated owing to floating substrate effects. In this report, the advantages and problems concerning SOI DRAM's were reconsidered by evaluation of our test devices and also by analysis with device and circuit simulators for their future prospects. The following advantages of SOI DRAM's were verified. Low-voltage operation, active current reduction and speed gain were obtained by the reduced junction capacitance and the back-gate-bias effect. Static refresh characteristics were improved due to the reduced junction area. Soft error immunity was improved greatly by the complete isolation of the active region when the body potential is fixed. The problems that need to be resolved are closely related to the floating substrate effect. The soft error immunity in a floating body condition and the dynamic refresh characteristics were degraded by the instability of the floating body potential. Process and device approaches such as the field-shield-body-fixing method as well as circuit approaches like the BSG scheme are required to eliminate the floating substrate effects. From these investigations it can be said that a low-voltage DRAM with a current design rule would be possible if we pay close attention to the floating-substrate-related issues by optimizing various process/device and circuit techniques. With further development of the technology to suppress the floating substrate effects, it will be possible to develop simple and low-cost giga-bit level SOI DRAM's which use the SOI's inherent features to the full.
Fukashi MORISHITA Yasuo YAMAGUCHI Takahisa EIMORI Toshiyuki OASHI Kazutami ARIMOTO Yasuo INOUE Tadashi NISHIMURA Michihiro YAMADA
It is confirmed by simulation that SOI-DRAMs can be operated at high speed by using the floating body structures. Several floating body effects are analyzed. It is described that the dynamic retention characteristics are not dominated by capacitive coupling and hole redistribution. And it is described that those characteristics are determined by the leakage current in the small pn-junction region of the floating body. Reducing pn junction leakage current is important for realizing a long retention time. If the pn junction leakage is suppressed to 10-18 A/µm, a dynamic retention time of 520 sec at a VBSG of 0.5 V can be achieved at 27. On those conditions, the refresh current of SOI-DRAMs is reduced by 54% compared with bulk-Si DRAMs.