1-5hit |
Takanori FUJISAWA Taichi YOSHIDA Kazu MISHIBA Masaaki IKEHARA
In this paper, we propose an example-based single image super resolution (SR) method by l2 approximation with self-sampled image patches. Example-based super resolution methods can reconstruct high resolution image patches by a linear combination of atoms in an overcomplete dictionary. This reconstruction requires a pair of two dictionaries created by tremendous low and high resolution image pairs from the prepared image databases. In our method, we introduce the dictionary by random sampling patches from just an input image and eliminate its training process. This dictionary exploits the self-similarity of images and it will no more depend on external image sets, which consern the storage space or the accuracy of referred image sets. In addition, we modified the approximation of input image to an l2-norm minimization problem, instead of commonly used sparse approximation such as l1-norm regularization. The l2 approximation has an advantage of computational cost by only solving an inverse problem. Through some experiments, the proposed method drastically reduces the computational time for the SR, and it provides a comparable performance to the conventional example-based SR methods with an l1 approximation and dictionary training.
Ryo FUJIMOTO Takanori FUJISAWA Masaaki IKEHARA
This paper proposes a novel method to estimate non-integer shift of images based on least squares approximation in the phase region. Conventional methods based on Phase Only Correlation (POC) take correlation between an image and its shifted image, and then estimate the non-integer shift by fitting the model equation. The problem when estimating using POC is that the estimated peak of the fitted model equation may not match the true peak of the POC function. This causes error in non-integer shift estimation. By calculating the phase difference directly in the phase region, the proposed method allows the estimation of sub-pixel shift through least squares approximation. Also by utilizing the characteristics of natural images, the proposed method limits adoption range for least squares approximation. By these improvements, the proposed method achieves high accuracy, and we validate through some examples.
Takanori FUJISAWA Masaaki IKEHARA
Image deconvolution is the task to recover the image information that was lost by taking photos with blur. Especially, to perform image deconvolution without prior information about blur kernel, is called blind image deconvolution. This framework is seriously ill-posed and an additional operation is required such as extracting image features. Many blind deconvolution frameworks separate the problem into kernel estimation problem and deconvolution problem. In order to solve the kernel estimation problem, previous frameworks extract the image's salient features by preprocessing, such as edge extraction. The disadvantage of these frameworks is that the quality of the estimated kernel is influenced by the region with no salient edges. Moreover, the optimization in the previous frameworks requires iterative calculation of convolution, which takes a heavy computational cost. In this paper, we present a blind image deconvolution framework using a specified high-pass filter (HPF) for feature extraction to estimate a blur kernel. The HPF-based feature extraction properly weights the image's regions for the optimization problem. Therefore, our kernel estimation problem can estimate the kernel in the region with no salient edges. In addition, our approach accelerates both kernel estimation and deconvolution processes by utilizing a conjugate gradient method in a frequency domain. This method eliminates costly convolution operations from these processes and reduces the execution time. Evaluation for 20 test images shows our framework not only improves the quality of recovered images but also performs faster than conventional frameworks.
Yutaka TAKAGI Takanori FUJISAWA Masaaki IKEHARA
In this paper, we propose a method for removing block noise which appears in JPEG (Joint Photographic Experts Group) encoded images. We iteratively perform the 3D wiener filtering and correction of the coefficients. In the wiener filtering, we perform the block matching for each patch in order to get the patches which have high similarities to the reference patch. After wiener filtering, the collected patches are returned to the places where they were and aggregated. We compare the performance of the proposed method to some conventional methods, and show that the proposed method has an excellent performance.
Kengo TSUDA Takanori FUJISAWA Masaaki IKEHARA
In this paper, we introduce a new method to remove random-valued impulse noise in an image. Random-valued impulse noise replaces the pixel value at a random position by a random value. Due to the randomness of the noisy pixel values, it is difficult to detect them by comparison with neighboring pixels, which is used in many conventional methods. Then we improve the recent noise detector which uses a non-local search of similar structure. Next we propose a new noise removal algorithm by sparse representation using DCT basis. Furthermore, the sparse representation can remove impulse noise by using the neighboring similar image patch. This method has much more superior noise removal performance than conventional methods at images. We confirm the effectiveness of the proposed method quantitatively and qualitatively.