1-5hit |
Weifeng LI Tetsuya SHINDE Hiroshi FUJIMURA Chiyomi MIYAJIMA Takanori NISHINO Katunobu ITOU Kazuya TAKEDA Fumitada ITAKURA
This paper describes a new multi-channel method of noisy speech recognition, which estimates the log spectrum of speech at a close-talking microphone based on the multiple regression of the log spectra (MRLS) of noisy signals captured by distributed microphones. The advantages of the proposed method are as follows: 1) The method does not require a sensitive geometric layout, calibration of the sensors nor additional pre-processing for tracking the speech source; 2) System works in very small computation amounts; and 3) Regression weights can be statistically optimized over the given training data. Once the optimal regression weights are obtained by regression learning, they can be utilized to generate the estimated log spectrum in the recognition phase, where the speech of close-talking is no longer required. The performance of the proposed method is illustrated by speech recognition of real in-car dialogue data. In comparison to the nearest distant microphone and multi-microphone adaptive beamformer, the proposed approach obtains relative word error rate (WER) reductions of 9.8% and 3.6%, respectively.
Kenta NIWA Takanori NISHINO Kazuya TAKEDA
A sound field reproduction method is proposed that uses blind source separation and a head-related transfer function. In the proposed system, multichannel acoustic signals captured at distant microphones are decomposed to a set of location/signal pairs of virtual sound sources based on frequency-domain independent component analysis. After estimating the locations and the signals of the virtual sources by convolving the controlled acoustic transfer functions with each signal, the spatial sound is constructed at the selected point. In experiments, a sound field made by six sound sources is captured using 48 distant microphones and decomposed into sets of virtual sound sources. Since subjective evaluation shows no significant difference between natural and reconstructed sound when six virtual sources and are used, the effectiveness of the decomposing algorithm as well as the virtual source representation are confirmed.
Weifeng LI Chiyomi MIYAJIMA Takanori NISHINO Katsunobu ITOU Kazuya TAKEDA Fumitada ITAKURA
In this paper, we address issues in improving hands-free speech recognition performance in different car environments using multiple spatially distributed microphones. In the previous work, we proposed the multiple linear regression of the log spectra (MRLS) for estimating the log spectra of speech at a close-talking microphone. In this paper, the concept is extended to nonlinear regressions. Regressions in the cepstrum domain are also investigated. An effective algorithm is developed to adapt the regression weights automatically to different noise environments. Compared to the nearest distant microphone and adaptive beamformer (Generalized Sidelobe Canceller), the proposed adaptive nonlinear regression approach shows an advantage in the average relative word error rate (WER) reductions of 58.5% and 10.3%, respectively, for isolated word recognition under 15 real car environments.
Motoki OGASAWARA Takanori NISHINO Kazuya TAKEDA
The separation and localization of sound source signals are important techniques for many applications, such as highly realistic communication and speech recognition systems. These systems are expected to work without such prior information as the number of sound sources and the environmental conditions. In this paper, we developed a dodecahedral microphone array and proposed a novel separation method with our developed device. This method refers to human sound localization cues and uses acoustical characteristics obtained by the shape of the dodecahedral microphone array. Moreover, this method includes an estimation method of the number of sound sources that can operate without prior information. The sound source separation performances were evaluated under simulated and actual reverberant conditions, and the results were compared with the conventional method. The experimental results showed that our separation performance outperformed the conventional method.
Yusuke MIZUNO Kazunobu KONDO Takanori NISHINO Norihide KITAOKA Kazuya TAKEDA
Blind source separation is a technique that can separate sound sources without such information as source location, the number of sources, and the utterance content. Multi-channel source separation using many microphones separates signals with high accuracy, even if there are many sources. However, these methods have extremely high computational complexity, which must be reduced. In this paper, we propose a computational complexity reduction method for blind source separation based on frequency domain independent component analysis (FDICA) and examine temporal data that are effective for source separation. A frame with many sound sources is effective for FDICA source separation. We assume that a frame with a low kurtosis has many sound sources and preferentially select such frames. In our proposed method, we used the log power spectrum and the kurtosis of the magnitude distribution of the observed data as selection criteria and conducted source separation experiments using speech signals from twelve speakers. We evaluated the separation performances by the signal-to-interference ratio (SIR) improvement score. From our results, the SIR improvement score was 24.3dB when all the frames were used, and 23.3dB when the 300 frames selected by our criteria were used. These results clarified that our proposed selection criteria based on kurtosis and magnitude is effective. Furthermore, we significantly reduced the computational complexity because it is proportional to the number of selected frames.