1-6hit |
Kazuhide NAKAJIMA Takashi MATSUI Chisato FUKAI
We investigate numerically the applicability of photonic crystal fiber (PCF) with a uniform air hole structure as a wide-band transmission medium. We show that accumulated dispersion over the PCF can be reduced effectively by optimizing the index profile of dispersion compensating fiber (DCF). We also show that a bandwidth of more than 300 nm will be available for 40 Gbit/s NRZ transmission by using the PCF as a transmission medium instead of conventional 1.3 µm zero-dispersion single-mode fiber (SMF).
Chisato FUKAI Kazuhide NAKAJIMA Takashi MATSUI
We describe the applicability of photonic crystal fiber (PCF) with an enlarged effective area Aeff to a distributed Raman amplification (DRA) transmission. We investigate the DRA transmission performance numerically over a large Aeff PCF taking account of the signal-to-noise ratio (SNR) improvement RSNR in the S, C, and L bands. We show that an RSNR of 3 dB can be expected by utilizing DRA with a maximum pump power of 500 mW when the Aeff of the PCF is 230 µm2.
Yuto SAGAE Takashi MATSUI Taiji SAKAMOTO Kazuhide NAKAJIMA
We propose an ultra-low inter-core crosstalk (XT) multi-core fiber (MCF) with standard 125-μm cladding. We show the fiber design and fabrication results of an MCF housing four cores with W-shaped index profile; it offers XT of less than -67dB/km over the whole C+L band. This enables us to realize 10,000-km transmission with negligible XT penalty. We also observe a low-loss of 0.17dB/km (average) at a wavelength of 1.55μm and other optical properties compatible with ITU-T G.654.B fiber. We also elucidate its good micro-bend resistance in terms of both the loss and XT to confirm its applicability to high-density optical fiber cables. Finally, we show that the fabricated MCF is feasible along with long-distance transmission by confirming that the XT noise performance corresponds to transmission distances of 10,000km or more.
Eri TAGUCHI Takeshi FUJISAWA Yoko YAMASHITA Shuntaro MAKINO Nobutomo HANZAWA Taiji SAKAMOTO Takashi MATSUI Kyozo TSUJIKAWA Kazuhide NAKAJIMA Fumihiko YAMAMOTO Kunimasa SAITOH
A PLC based mode multi/demultiplexer based on asymmetric directional coupler has advantages in terms of compactness, mass productivity, low insertion loss, and matured reliability. However, it has relatively large wavelength dependence due to the difference of coupling length. To expand the bandwidth, we have designed two-mode (LP01/LP11a) multi/demultiplexer by wavefront matching method and demonstrated the broadband and low-loss characteristics. This paper reviews the device design by wavefront matching method and investigates the mechanism of its broadband characteristics.
Kazuhide NAKAJIMA Tomoya SHIMIZU Takashi MATSUI Chisato FUKAI Toshio KURASHIMA
The characteristics of hole-assisted fiber (HAF) are investigated both numerically and experimentally in terms of its applicability as a bending-loss insensitive fiber (BIF). We show that HAF with the desired mode-field diameter (MFD), bending-loss and cutoff wavelength characteristics can be roughly designed by taking a few specific structural parameters into consideration. We also show that an optical cord composed of adequately designed HAF realizes satisfactory transmission performance with respect to its multi-path interference (MPI) characteristics. These results reveal that a hole-assisted type BIF will be beneficial for realizing easy and economical installation and maintenance in future access networks.
Takashi MATSUI Kyozo TSUJIKAWA Takehisa OKUDA Nobutomo HANZAWA Yuto SAGAE Kazuhide NAKAJIMA Yasuyuki FUJIYA Kazuyuki SHIRAKI
We investigate the potential of photonic crystal fiber (PCF) to realize high quality and high-power transmission. We utilize the PCF with a quasi-uniform air-hole structure, and numerically clarify that the quasi-uniform PCF can realize the effective area (Aeff) of about 500µm2 with bending loss comparable with that of a conventional single-mode fiber for telecom use by considering the quasi single-mode transmission. We then apply the quasi-uniform PCF to kW-class high-power beam delivery for the single-mode laser processing. The cross-sectional design of the PCF with the high-power delivery potential of more than 300kW·m is numerically and experimentally revealed. A 10kW single-mode beam at 1070nm is successfully delivered over a 30m-long optical fiber cable containing a fabricated PCF with single-mode class beam quality of M2 =1.7 for the first time.