1-3hit |
Takashi YATSUI Wataru NOMURA Motoichi OHTSU
Particles several tens of nanometers in size were aligned in the desired positions in a controlled manner by using capillary force interaction and suspension flow. Latex beads 40-nm in diameter were aligned linearly around a 10-µm-hole template fabricated by lithography. Further control of their position and separation was realized using colloidal gold nanoparticles by controlling the particle-substrate and particle-particle interactions using an optical near field generated on the edge of a Si wedge, in which the separation of the colloidal gold nanoparticles was controlled by the direction of polarization.
Jungshik LIM Takashi YATSUI Motoichi OHTSU
We investigated the initial stage of Zn dot growth using near-field optical chemical vapor deposition. The dependence of the rate of Zn dot deposition on dot size revealed that the deposition rate was maximal when the dot grew to a size equivalent to the probe apex diameter. Such observed size-dependent resonance was in good agreement with theoretical results for dipole-dipole coupling with a Forster field between the deposited Zn dot and the probe apex.
Jungshik LIM Tadashi KAWAZOE Takashi YATSUI Motoichi OHTSU
We fabricated the first Fe-coated fiber probe for magneto-optical applications. In order to improve the optical confinement capability, we used a double-layer structure, with a thin coating of Au. The double-layer structure consisted of 50-nm-thick Fe and 50-nm-thick Au. A probe-to-probe experiment confirmed that the fabricated fiber probe had an effective optical confinement capability for optical near-field measurement.