1-3hit |
Tohru TAMURA Toshifumi SATOH Takayuki UCHIDA Takashi FURUHATA
An analytical approach using human perception has been applied to the evaluation of the front-of-screen (FOS) quality of liquid crystal displays (LCDs), particularly regarding the regions of luminance nonuniformity called "muras." The accurate and consistent inspection of muras is extremely difficult because muras have various shapes and sizes as well as contrasts. And inspection results tend to depend on inspectors during the LCD manufacturing process. To determine the quantitative scale that shows the evaluation results of mura matching human perceptions, first, we conducted a perception test and clarified the "just noticeable difference" (JND) contrast according to the type of mura. Second, the relationship between the JND contrast of mura and background luminance was investigated. Finally, we proposed a quantitative scale of mura level on the basis of the JND contrasts at various background luminances. In this paper, we describe our research on human perception of muras at various background luminances and an approach to determining the quantitative scale of visible muras.
Takayuki UCHIDA Shigeru NAKANE Takeshi NAKADA Yujiro NAGATA Masao OHTSUKA
Luminance and luminous efficiency of EL devices have been improved considerably by inserting double buffer layers composed of two types of Phthalocyanine deposited by the LB technique. This is considered to be caused by hole injection through relatively smooth energy levels.
Hao LEI Keisuke ICHIKAWA Meihan WANG Yoichi HOSHI Takayuki UCHIDA Yutaka SAWADA
The damage to the organic layer of aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) film was investigated on the basis of the change in photoluminescence (PL) intensity. To suppress the bombardment of the substrate with high-energy particles such as γ-electrons and negative oxygen ions, we used a facing-target sputtering (FTS) system. A marked reduction, however, of the PL intensity of the organic layer was still observed upon the deposition of an indium tin oxide (ITO) film on the organic film. To reduce this reduction, we proposed the insertion of a sector-shaped metal shield near the target electrode, and we showed its effectiveness in reducing the damage. This reduction of the damage is thought to be caused by the elimination of γ-electrons incident to the organic film surface escaping from the target area near the substrate side. We confirmed that high-energy electron bombardment leads to a significant reduction of PL intensity of the organic layer. This indicates that high-energy electrons incident to the organic film surface play a key role in the damage of the organic layer during the sputtering process.