1-2hit |
Hideaki OKAZAKI Tomoyuki UWABA Hideo NAKANO Takehiko KAWASE
Global dynamic behavior particularly the bifurcation of periodic orbits of a parallel blower system is studied using a piecewise linear model and the one-dimensional map defined by the Poincare map. First several analytical tools are presented to numerically study the bifurcation process particularly the bifurcation point of the fixed point of the Poincare map. Using two bifurcation diagrams and a bifurcation set, it is shown how periodic orbits bifurcate and leads to chaotic state. It is also shown that the homoclinic bifurcations occur in some parameter regions and that the Li & Yorke conditions of the chaotic state hold in the parameter region which is included in the one where the homoclinic bifurcation occurs. Together with the above, the stable and unstable manifolds of a saddle closed orbit is illustrated and the existence of the homoclinic points is shown.
Hideaki OKAZAKI Hideo NAKANO Takehiko KAWASE
A parallel blower system is quite familiar in hydraulic machine systems and quite often employed in many process industries. It is dynamically dual to the fundamental functional element of digital computer, that is, the flip-flop circuit, which was extensively studied by Moser. Although the global dynamic behaviour of such systems has significant bearing upon system operation, no substantial study reports have hitherto been presented. Extensive research concern has primarily been concentrated upon the local stability of the equilibrium point. In the paper, a piecewise linear model is used to analytically and numerically investigate its manifold global dynamic behaviour. To do this, first the Poincar