Author Search Result

[Author] Takeshi B. NISHIMURA(2hit)

1-2hit
  • Single 1. 5 V Operation Power Amplifier MMIC with SrTiO3 Capacitors for 2. 4 GHz Wireless Applications

    Takeshi B. NISHIMURA  Naotaka IWATA  Keiko YAMAGUCHI  Masatoshi TOMITA  Yasunori BITO  Koichi TAKEMURA  Yoichi MIYASAKA  

     
    PAPER-Semiconductor Devices and Amplifiers

      Vol:
    E81-C No:6
      Page(s):
    898-903

    This paper describes design approach and power performance of a single 1. 5 V operation two-stage power amplifier MMIC for 2. 4 GHz wireless local area network applications. The MMIC with 0. 760. 96 mm2 area includes SrTiO3 (STO) capacitors with a high capacitance density of 8. 0 fF/µm2 and double-doped AlGaAs/InGaAs/AlGaAs heterojunction FETs with a shallow threshold voltage of -0. 24 V. Utilizing a series STO capacitor and a shunt inductor as an output matching circuit, the total chip size was reduced by 40% as compared with an MMIC utilizing SiNx capacitors. Under single 1.5 V operation, the developed MMIC delivered an output power of 110 mW (20.4 dBm) and a power-added efficiency (PAE) of 36.7% with an associated gain of 20.0 dB at 2.4 GHz. Even operated at a drain bias voltage of 0.8 V, the MMIC exhibited a high PAE of 31.0%.

  • Wide-Band CDMA Distortion Characteristics of an AlGaAs/InGaAs/AlGaAs Heterojunction FET under Various Quiescent Drain Current Operations

    Gary HAU  Takeshi B. NISHIMURA  Naotaka IWATA  

     
    PAPER-RF Power Devices

      Vol:
    E82-C No:11
      Page(s):
    1928-1935

    Wide-band CDMA (W-CDMA) distortion characteristics of a fabricated double-doped heterojunction FET (HJFET) are presented. Measured results demonstrate that the first and second adjacent channel W-CDMA adjacent channel leakage power ratios (ACPRs) of the HJFET are correlated to the third- and fifth-order intermodulation (IM3 and IM5) distortions respectively under various quiescent drain current operation (Iq). A first channel ACPR dip phenomenon is observed under a low Iq condition, resulting in improved power added efficiency. Due to its close correlation to the IM3 distortion, the ACPR dip phenomenon is explained in terms of the similar IM3 characteristic. Simulated results reveal that the dip is a consequence of the cancellation of distortions generated by the third- and fifth-order nonlinearities at the IM3 frequency. The conditions for the cancellation are detailed.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.