1-3hit |
Kiyoto TAKAHATA Yoshifumi MURAMOTO Seiji FUKUSHIMA Tomofumi FURUTA Tetsuichiro OHNO Tadao ISHIBASHI Hiroshi ITO
A uni-traveling-carrier refracting-facet photodiode, a short-stab bias circuit, and a patch antenna are monolithically integrated to make a compact and low-cost photonic millimeter-wave emitter for fiber-radio applications. The device emits the maximum effective radiation power of 173 dBm at 60 GHz including a directive gain of the patch antenna.
Yoshiyuki DOI Takaharu OHYAMA Toshihide YOSHIMATSU Tetsuichiro OHNO Yasuhiko NAKANISHI Shunichi SOMA Hiroshi YAMAZAKI Manabu OGUMA Toshikazu HASHIMOTO Hiroaki SANJOH
We review recent progress in integrated photonics devices and their applications for datacom. In addition to current technology used in 100-Gigabit Ethernet (100GbE) with a compact form-factor of the transceiver, the next generation of technology for 400GbE seeks a larger number of wavelengths with a more sophisticated modulation format and higher bit rate per wavelength. For wavelength scalability and functionality, planar lightwave circuits (PLCs), such as arrayed waveguide gratings (AWGs), will be important, as well higher-order-modulation to ramp up the total bit rate per wavelength. We introduce integration technology for a 100GbE optical sub-assembly that has a 4λ x 25-Gb/s non-return-to-zero (NRZ) modulation format. For beyond 100GbE, we also discuss applications of 100GbE sub-assemblies that provide 400-Gb/s throughput with 16λ x 25-Gb/s NRZ and bidirectional 8λ x 50-Gb/s four-level pulse amplitude modulation (PAM4) using PLC cyclic AWGs.
Yoshiyuki DOI Toshiaki KAGAWA Tetsuichiro OHNO Toshihide YOSHIMATSU Ken TSUZUKI Seiko MITACHI Seiji FUKUSHIMA
A novel base station for microwave radio-on-fiber systems is proposed. It consists of an L-band electroabsorption modulator and a uni-traveling-carrier photodiode. We show it is applicable for bias-free operation and full-duplex transmission and demonstrate 100-Mbit/s bidirectional data transmission in the 5-GHz band.