1-2hit |
Yi ZHOU Tadao MURATA Thomas DEFANTI Hui ZHANG
Despite their attractive properties, networked virtual environments (net-VEs) are notoriously difficult to design, implement and test due to the concurrency, real-time and networking features in these systems. The current practice for net-VE design is basically trial and error, empirical, and totally lacks formal methods. This paper proposes to apply a Petri net formal modeling technique to a net-VE: NICE (Narrative Immersive Constructionist/Collaborative Environment), predict the net-VE performance based on simulation, and improve the net-VE performance. NICE is essentially a network of collaborative virtual reality systems called CAVE-(CAVE Automatic Virtual Environment). First, we present extended fuzzy-timing Petri net models of both CAVE and NICE. Then, by using these models and Design/CPN as the simulation tool, we have conducted various simulations to study real-time behavior, network effects and performance (latencies and jitters) of NICE. Our simulation results are consistent with experimental data.
Thomas DEFANTI Maxine BROWN Jason LEIGH Oliver YU Eric HE Joel MAMBRETTI David LILLETHUN Jeremy WEINBERGER
The OptIPuter is a radical distributed visualization, teleimmersion, data mining and computing architecture. Observing that the exponential growth rates in bandwidth and storage are now much higher than Moore's Law, this major new project of several universities--currently six in the US and one in Amsterdam--exploits a new world of computing in which the central architectural element is optical networking. This transition is caused by the use of parallelism, as in supercomputing a decade ago. However, this time the parallelism is in multiple wavelengths of light, or lambdas, on single optical fibers, creating a LambdaGrid. Providing applications-centric middleware to control the LambdaGrid on a regional and global scale is a key goal of the OptIPuter and StarLight Optical Switching projects.