1-3hit |
Tie HONG Yuan Wei LI Zhi Ying WANG
Head action recognition, as a specific problem in action recognition, has been studied in this paper. Different from most existing researches, our head action recognition problem is specifically defined for the requirement of some practical applications. Based on our definition, we build a corresponding head action dataset which contains many challenging cases. For action recognition, we proposed a real-time head action recognition framework based on HOF and ELM. The framework consists of face detection based ROI determination, HOF feature extraction in ROI, and ELM based action prediction. Experiments show that our method achieves good accuracy and is efficient enough for practical applications.
Yingwei FU Kele XU Haibo MI Qiuqiang KONG Dezhi WANG Huaimin WANG Tie HONG
Sound event detection is intended to identify the sound events in audio recordings, which has widespread applications in real life. Recently, convolutional recurrent neural network (CRNN) models have achieved state-of-the-art performance in this task due to their capabilities in learning the representative features. However, the CRNN models are of high complexities with millions of parameters to be trained, which limits their usage for the mobile and embedded devices with limited computation resource. Model distillation is effective to distill the knowledge of a complex model to a smaller one, which can be deployed on the devices with limited computational power. In this letter, we propose a novel multi model-based distillation approach for sound event detection by making use of the knowledge from models of multiple teachers which are complementary in detecting sound events. Extensive experimental results demonstrated that our approach achieves a compression ratio about 50 times. In addition, better performance is obtained for the sound event detection task.
Huaizhe ZHOU Haihe BA Yongjun WANG Tie HONG
The arms race between offense and defense in the cloud impels the innovation of techniques for monitoring attacks and unauthorized activities. The promising technique of virtual machine introspection (VMI) becomes prevalent for its tamper-resistant capability. However, some elaborate exploitations are capable of invalidating VMI-based tools by breaking the assumption of a trusted guest kernel. To achieve a more reliable and robust introspection, we introduce a practical approach to monitor and detect attacks that attempt to subvert VMI in this paper. Our approach combines supervised machine learning and hardware architectural events to identify those malicious behaviors which are targeted at VMI techniques. To demonstrate the feasibility, we implement a prototype named HyperMon on the Xen hypervisor. The results of our evaluation show the effectiveness of HyperMon in detecting malicious behaviors with an average accuracy of 90.51% (AUC).