Author Search Result

[Author] Tomiji HISAMURA(4hit)

1-4hit
  • An Algebraic Criterion for State Machine Allocatable Nets

    Atsushi OHTA  Tomiji HISAMURA  

     
    LETTER

      Vol:
    E81-A No:4
      Page(s):
    626-627

    Silva et al. has suggested a criterion based on incidence matrix to verify if a given extended free choice net has a live and bounded marking. This paper shows that this criterion is a necessary and sufficient condition that a given net is a state machine allocatable (SMA) net. This result gives a polynomial algorithm to verify SMA net.

  • On Some Analysis Properties of Petri Net Systems under the Earliest Firing Rule

    Atsushi OHTA  Tomiji HISAMURA  

     
    PAPER

      Vol:
    E79-A No:11
      Page(s):
    1791-1796

    Petri net is a graphical and mathematical modeling tool for discrete event systems. This paper treats analysis problems for Petri nets under the earliest firing rule. Under this firing rule, transitions must fire as soon as they are enabled. Marked Petri nets under the earliest firing rule are called earliest firing systems, for short. First, some relations in analysis problems between the earliest and the normal firing systems are discussed. These problems include deadlock freedom, boundedness, persistency and liveness. Then, relations among three types of reachability are considered from the viewpoint of the earliest firing rule. Since earliest firing systems can simulate register machines, they have equivalent modeling powers to Turing machines. It suggests, however, that most of the analysis problems of earliest firing systems with general net structures are undecidable. In this paper, net structures are restricted to a subclass called dissynchronous choice (DC) nets. It is shown that the reachability problem from an initial marking to dead markings (markings where no transition can fire) in earliest firing DC systems is equivalent to the usual reachability problem of the same systems under the normal firing rule. Then, the result is applied to reachability problems of controlled DC systems in which some transitions in the net have external control input places. It is shown that for systems where every transition in the net has an external control input place, one type of reachability problem is decidable. Lastly, the liveness problem of earliest firing DC systems is considered and it is shown that this problem is equivalent to that of the underlying DC system under the normal firing rule. It is also shown that this liveness problem is decidable.

  • On Liveness of Extended Partially Ordered Condition Nets

    Atsushi OHTA  Kohkichi TSUJI  Tomiji HISAMURA  

     
    LETTER

      Vol:
    E82-A No:11
      Page(s):
    2576-2578

    Petri net is an efficient model for concurrent systems. Liveness is one of analysis properties of Petri net. It concerns with potential fireability of transitions. Many studies have been done on liveness of Petri nets and subclasses are suggested with liveness criteria. In this paper, extended partially ordered condition (EPOC) net is suggested and its liveness is studied. Equivalence of liveness and place-liveness is derived. Analysis using siphon and traps are done. Liveness under the earliest firing rule, where transition must fire as soon as it is enabled, is also studied.

  • On Liveness of Time POC Nets with the Static Fair Condition

    Atsushi OHTA  Tomiji HISAMURA  

     
    PAPER-Concurrent Systems

      Vol:
    E82-A No:8
      Page(s):
    1648-1655

    Petri net is a graphical and mathematical modeling tool for discrete event systems. This paper treats analysis problems of time Petri nets. In this model, a minimal and a maximal firing delays are assigned to each transition. If a transition is 'enabled' it can fire after minimal delay has passed and must fire before maximal delay has elapsed. Since time Petri net can simulate register machines, it has equivalent modeling power to that of Turing machine. It means, however, that most of the analysis problems of time Petri nets with general net structures are undecidable. In this paper, net structures are restricted to a subclass called partially ordered condition (POC) nets and dissynchronous choice (DC) nets. Firing delays are also restricted to satisfy 'static fair condition' which assures chance to fire for all transitions enabled simultaneously. First, a sufficient condition of liveness of time POC net with the static fair condition is derived. Then it is shown that liveness of time DC net with static fair condition is equivalent to liveness of the underlying nontime net. This means that liveness problem of this class is decidable. Lastly, liveness problem of extended free choice (EFC) net is shown to be decidable.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.