1-1hit |
Tamio SAITO Teruhisa NINOMIYA Osamu ISAJI Tominaga WATANAME Hiroshi SUZUKI Naofumi OKUBO
An important aspect of traffic safety is the development of aids that extend the driver's time and motion perception. One promising candidate is the compact, lightweight millimeter-wave FM-CW radar now being widely studied. Although the homodyne FM-CW radar is well known form its simplicity, it has a relatively low S/N ratio. This paper describes the principles behind our newly-developed heterodyne FM-CW radar and it's evaluation results. The heterodyne FM-CE radar generates sidebands by switching a front-end amplifier and also uses the heterodyne detection technique for gaining sensor sensitivity. The heterodyne FM-CW radar's signal to noise ratio was 19.5 dB better than previously designed homodyne FM-CW radar.