1-14hit |
A.K.M. BAKI Kozo HASHIMOTO Naoki SHINOHARA Tomohiko MITANI Hiroshi MATSUMOTO
The Earth will require sustainable electricity sources equivalent to 3 to 5 times the commercial power presently produced by 2050. Solar Power Satellite (SPS) is one option for meeting the huge future energy demand. SPS can send enormous amounts of power to the Earth as the form of microwave (MW). A highly efficient microwave power transmission (MPT) system is needed for SPS. A critical goal of SPS is to maintain highest Beam Efficiency (BE) because the microwaves from SPS will be converted to utility power unlike the MW from communication satellites. Another critical goal of SPS is to maintain Side Lobe Levels (SLL) as small as possible to reduce interference to other communication systems. One way to decrease SLL and increase BE is the edge tapering of a phased array antenna. However, tapering the excitation requires a technically complicated system. Another way of achieving minimum SLL is with randomly spaced element position but it does not guarantee higher BE and the determination of random element position is also a difficult task. Isosceles Trapezoidal Distribution (ITD) edge tapered antenna was studied for SPS as an optimization between full edge tapering and uniform amplitude distribution. The highest Beam Collection Efficiency (BCE) and lowest SLL (except maximum SLL) are possible to achieve in ITD edge tapering and ITD edge tapered antenna is technically better. The performance of ITD is further improved from the perspective of both Maximum Side Lobe Level (MSLL) and BE by using unequal spacing of the antenna elements. A remarkable reduction in MSLL is achieved with ITD edge tapering with Unequal element spacing (ITDU). BE was also highest in ITDU. Determination of unequal element position for ITDU is very easy. ITDU is a newer concept that is experimented for the first time. The merits of ITDU over ITD and Gaussian edge tapering are discussed.
Yong HUANG Tomohiko MITANI Takaki ISHIKAWA Naoki SHINOHARA
In order to efficiently drive a low-power DC motor using microwave power transfer (MPT), a compact power-receiving device is developed, which consists of a rectenna array and an improved DC-DC converter with constant input resistance characteristics. Since the conversion efficiency of the rectenna is strongly affected by the output load, it is difficult to efficiently drive a dynamic load resistance device such as DC motor. Using both continuous-wave (CW) and pulsed-wave MPT, experiments are carried out on driving the DC motor whose load resistance is varying from 36 to 140 Ω. In the CW case, the measured overall efficiency of the power-receiving device is constant over 50% for the power density of 0.25 to 2.08 mW/cm2. In particular, the overall efficiency is 62%, 70.8% for the power density of 0.25, 0.98 mW/cm2 where the received power of the single antenna is 13, 50 mW, respectively. In the pulsed-wave case, the measured overall efficiency is over 44% for a duty ratio of 0.2 to 1 for the power density of 0.98 mW/cm2.
Nobuyuki TAKABAYASHI Bo YANG Naoki SHINOHARA Tomohiko MITANI
Drones have been attractive for many kinds of industries, but limited power supply from batteries has impeded drones from being operated for longer hours. Microwave power transmission (MPT) is one of the most prospective technologies to release them from the limitation. Since, among several types of drones, micro-drone has shorter available flight time, it is reasonable to provide micro-drone with wireless charging access with an MPT system. However, there is no suitable rectenna for micro-drone charging applications in preceding studies. In this paper, an MPT system for micro-drone was proposed at C-band where a lightweight and compact rectenna array with 20-W class output power was developed. Under illumination of a flat-top beam with 203 mW/cm2 of power density, a 16-element rectenna array was measured. The 16-element rectenna was formed with the aid of a honeycomb substrate for lightness and GaAs Schottky barrier diodes for high output. It was 37.5 g in weight and 146.4 mm by 146.4 mm in size. It output 27.0 W of dc power at 19.0 V at 5.8 GHz when radio frequency power of 280 W was generated by the injection-locked magnetron and 134 W was transmitted from the transmitting phased array. The power-to-weight ratio was 0.72W/g. The power conversion efficiency was 61.9%. These numbers outperformed the rectennas in the preceding studies and are suitable for an MPT system to micro-drone.
Katsumi KAWAI Naoki SHINOHARA Tomohiko MITANI
This study proposes a new structure of a single-shunt rectifier circuit that can reduce circuit loss and improve efficiency over the conventional structure. The proposed structure can provide impedance matching to the measurement system (or receiving antenna) without the use of conventional matching circuits, such as stubs and tapers. The proposed structure can simultaneously perform full-wave rectification and impedance matching by placing a feeding point on the output filter's λ/4 transmission line. We use circuit simulation to compare the RF-DC conversion efficiency and circuit loss of the conventional and proposed structures. The simulation results show that the proposed structure has lower circuit loss and higher RF-DC conversion efficiency than the conventional structure. We fabricate the proposed rectifier circuit using a GaAs Schottky barrier diode. The simulation and measurement results show that the single-shunt rectifier circuit's proposed structure is capable of rectification and impedance matching. The fabricated rectifier circuit's RF-DC conversion efficiency reaches a maximum of 91.0%. This RF-DC conversion efficiency is a world record for 920-MHz band rectifier circuits.
A.K.M. BAKI Naoki SHINOHARA Hiroshi MATSUMOTO Kozo HASHIMOTO Tomohiko MITANI
Minimizing the Side Lobe Level (SLL) and attain highest achievable Beam Collection Efficiency (BCE) is a critical goal for Solar Power Station/Satellite (SPS). If all antennas are uniformly excited then the main beam will carry only a part of the total energy due to the higher SLL. SLL is decreased and BCE is increased by adopting edge tapering for SPS. But edge tapering is a complex technical problem for SPS. So an optimization is needed between uniform amplitude distribution and edge tapering system. We have derived a new method of edge tapering called Isosceles Trapezoidal Distribution (ITD) edge tapering. Only a small number of antennas from each side of the phased array antenna are tapered in this method. ITD edge tapering is almost uniform so it is technically better. We have compared different amplitude distribution systems; uniform, Gaussian, Dolph-Chebyshev and the newly derived ITD method. The SLL reduction in ITD is even lower than those of other kinds of edge tapering. Therefore the amount of losing power in the SLL in ITD is lower. As a result the interference level becomes lower and BCE becomes higher in this method. The higher BCE and better SLL performance than those with uniform distribution can be achieved in ITD with phase error and under unit failed condition.
Shunji TANAKA Tomohiko MITANI Yoshio EBIHARA
An efficient beamforming algorithm for large-scale phased arrays with lossy digital phase shifters is presented. This problem, which arises in microwave power transmission from solar power satellites, is to maximize the array gain in a desired direction with the gain loss of the phase shifters taken into account. In this paper the problem is first formulated as a discrete optimization problem, which is then decomposed into element-wise subproblems by the real rotation theorem. Based on this approach, a polynomial-time algorithm to solve the problem numerically is constructed and its effectiveness is verified by numerical simulations.
Takayuki MATSUMURO Yohei ISHIKAWA Tomohiko MITANI Naoki SHINOHARA
This study mainly involved examining a high-directivity radiation system with spherical dielectric resonator as pseudo multipole source. The method of spherical wave expansion is focused on wherein the plane wave that is infinitely spread can be radiated from or absorbed by multipoles at the origin. It is not possible to explain this phenomenon by Huygens' principle, which is a basic principle of aperture antenna theory. Thus, in the study, a high-directivity beam design is proposed by synthesizing spherical waves. The directivity of the synthesized spherical wave corresponds with the angular momentum and angle, which is an uncertainty relation different from that of the aperture source. The estimation of the effective aperture of the synthesized spherical wave indicates that the wave intrinsic source is assumed to exist at the surface of the cutoff region. Finally, the results reveal that a radiation system without a singular point can be composed using a spherical dielectric resonator. The study discusses the potential of a high-directivity radiation system constructed by a multi-mode degenerate spherical dielectric resonator as a pseudo multipole source.
Katsumi KAWAI Naoki SHINOHARA Tomohiko MITANI
This study introduces a novel single-diode rectenna, enhancing the rf-dc conversion efficiency using harmonic control of the antenna impedance. We employ source-pull simulations encompassing the fundamental frequency and the harmonics to achieve a highly efficient rectenna. The results of the source-pull simulations delineate the source-impedance ranges required for enhanced efficiency at each harmonic. Based on the source-pull simulation results, we designed two inverted-F antenna with input impedances within and without these identified source impedance ranges. Experimental results show that the proposed rectenna has a maximum rf-dc conversion efficiency of 75.9% at the fundamental frequency of 920 MHz, an input power of 10.8 dBm, and a load resistance of 1 kΩ, which is higher than that of the comparative rectenna without harmonic control of the antenna impedance. This study demonstrates that the proposed rectenna achieves high efficiency through the direct connection of the antenna and the single diode, along with harmonic control of the antenna impedance.
Baku TAKAHARA Tomohiko MITANI Naoki SHINOHARA
We propose microwave heating via electromagnetic coupling using zeroth-order resonators (ZORs) to extend the uniform heating area. ZORs can generate resonant modes with a wavenumber of 0, which corresponds to an infinite guide wavelength. Under this condition, uniform heating is expected because the resulting standing waves would not have nodes or antinodes. In the design proposed in this paper, two ZORs fabricated on dielectric substrates are arranged to face each other for electromagnetic coupling, and a sample placed between the resonators is heated. A single ZOR was investigated using a 3D electromagnetic simulator, and the resonant frequency and electric field distribution of the simulated ZOR were confirmed to be in good agreement with those of the fabricated ZOR. Simulations of two ZORs facing each other were then conducted to evaluate the performance of the proposed system as a heating apparatus. It was found that a resonator spacing of 25 mm was suitable for uniform heating. Heating simulations of SiC and Al2O3 sheets were performed with the obtained structure. The heating uniformity was evaluated by the width L50% over which the power loss distribution exceeds half the maximum value. This evaluation index was equal to 0.397λ0 for SiC and 0.409λ0 for Al2O3, both of which exceed λ0/4, the distance between a neighboring node and antinode of a standing wave, where λ0 is the free-space wavelength. Therefore, the proposed heating apparatus is effective for uniform microwave heating. Because of the different electrical parameters of the heated materials, SiC can be easily heated, whereas Al2O3 heats little. Finally, heating experiments were performed on each of these materials. Good uniformity in temperature was obtained for both SiC and Al2O3 sheets.
Tomohiko MITANI Shogo KAWASHIMA Naoki SHINOHARA
A retrodirective system utilizing harmonic reradiation from a rectenna is developed and verified for long-range wireless power transfer applications, such as low-power or battery-less devices and lightweight aerial vehicles. The second harmonic generated by the rectifying circuit is used instead of a pilot signal, and thus an oscillator for creating the pilot signal is not required. The proposed retrodirective system consists of a 2.45 GHz transmitter with a two-element phased array antenna, a 4.9 GHz direction-of-arrival (DoA) estimation system, a phase control system, and a rectenna. The rectenna, consisting of a half-wave dipole antenna, receives microwave power from the 2.45 GHz transmitter and reradiates the harmonic toward the 4.9 GHz DoA estimation system. The rectenna characteristics and experimental demonstrations of the proposed retrodirective system are described. From measurement results, the dc output power pattern for the developed retrodirective system is in good agreement with that obtained using manual beam steering. The measured DoA estimation errors are within the range of -2.4° to 4.8°.
Bo YANG Tomohiko MITANI Naoki SHINOHARA
We developed a 5.8 GHz power-variable phase-controlled magnetron (PVPCM) which controls the phase of magnetron output by a phase shifter and controls the power by the anode current of the magnetron. This method is different from the previous 2.45 GHz phase-controlled magnetron which utilizes an injection method and a phase locked loop by the anode current, since the frequency of 5.8 GHz magnetron hardly changes with the anode current. Our experiments show that the developed 5.8 GHz PVPCM had a variable output power with 1% power stability from 160 W to 329 W, the phase accuracy was nearly ±1°, and the response time was less than 100 µs. Stable output power, high phase-controlled accuracy, and fast response speed microwave sources based on the PVPCMs are suitable for phased array system for wireless power transfer.
Naoki HASEGAWA Tomohiko MITANI Naoki SHINOHARA Masakazu DAIDAI Yoko KATSURA Hisayuki SEGO Takashi WATANABE
A simple, low reflection, and highly-efficient pilot-plant scale microwave irradiation reactor for woody biomass pretreatment was fabricated. Pretreatment is an essential process for effective bioethanol production. The fabricated reactor consists of 8 microwave irradiators which are attached to a metal pipe. The woody biomass mixture which contains water and organic acid flows through the metal pipe and is heated by microwaves at a total power of 12,kW. To design the microwave irradiators, we used a 3D Finite Element Method (FEM) simulator, which was based on the measured complex permittivity data of the woody biomass mixture. The simulation results showed that the reflection coefficient $|S_{11}|$ from the reactor was less than -30,dB when the woody biomass mixture temperature was between 30$^{circ}$C and 90$^{circ}$C. Finally, we experimentally confirmed that the fabricated irradiation reactor yielded a microwave absorption efficiency of 79%.
Tomohiko MITANI Naoki SHINOHARA Hiroshi MATSUMOTO Kozo HASHIMOTO
Microwave Power Transmission (MPT) technology is one of the most essential parts for Solar Power Station/Satellite (SPS). We study on application of magnetrons as DC-RF converters for the MPT transmitting system. Magnetrons cost much cheaper, have much higher DC-RF efficiency over 70% and much lighter system weight per 1 watt RF output than semiconductor amplifiers although they have wider bandwidth of the fundamental frequency and spurious noises in various frequencies. Spurious noises are radiated from the transmitting system and interfere in the other communication systems both in space and on the Earth. The objective of this study is the improvement of the spurious noises generated from magnetrons. Experimentally, magnetrons driven by DC stabilized power supply had not only narrower bandwidth of the fundamental frequency but also lower spurious noise levels when filament current is turned off than when it is turned on. Some spurious noises are probably caused by the intermodulation between the low frequency spurious noises, which frequency is below 1 GHz, and the fundamental or the harmonics. We also verified that the harmonics levels of the measured magnetron in our measurement system were below -70 dBc, which are comparable to or better than those of some semiconductor amplifiers, and that the harmonics were not improved greatly when the filament current was turned off because the source of the harmonics is the distortion of the fundamental.