Author Search Result

[Author] Tomokazu TAKAHASHI(6hit)

1-6hit
  • Incremental Unsupervised-Learning of Appearance Manifold with View-Dependent Covariance Matrix for Face Recognition from Video Sequences

    Lina  Tomokazu TAKAHASHI  Ichiro IDE  Hiroshi MURASE  

     
    PAPER-Pattern Recognition

      Vol:
    E92-D No:4
      Page(s):
    642-652

    We propose an appearance manifold with view-dependent covariance matrix for face recognition from video sequences in two learning frameworks: the supervised-learning and the incremental unsupervised-learning. The advantages of this method are, first, the appearance manifold with view-dependent covariance matrix model is robust to pose changes and is also noise invariant, since the embedded covariance matrices are calculated based on their poses in order to learn the samples' distributions along the manifold. Moreover, the proposed incremental unsupervised-learning framework is more realistic for real-world face recognition applications. It is obvious that it is difficult to collect large amounts of face sequences under complete poses (from left sideview to right sideview) for training. Here, an incremental unsupervised-learning framework allows us to train the system with the available initial sequences, and later update the system's knowledge incrementally every time an unlabelled sequence is input. In addition, we also integrate the appearance manifold with view-dependent covariance matrix model with a pose estimation system for improving the classification accuracy and easily detecting sequences with overlapped poses for merging process in the incremental unsupervised-learning framework. The experimental results showed that, in both frameworks, the proposed appearance manifold with view-dependent covariance matrix method could recognize faces from video sequences accurately.

  • Human Wearable Attribute Recognition Using Probability-Map-Based Decomposition of Thermal Infrared Images

    Brahmastro KRESNARAMAN  Yasutomo KAWANISHI  Daisuke DEGUCHI  Tomokazu TAKAHASHI  Yoshito MEKADA  Ichiro IDE  Hiroshi MURASE  

     
    PAPER-Image

      Vol:
    E100-A No:3
      Page(s):
    854-864

    This paper addresses the attribute recognition problem, a field of research that is dominated by studies in the visible spectrum. Only a few works are available in the thermal spectrum, which is fundamentally different from the visible one. This research performs recognition specifically on wearable attributes, such as glasses and masks. Usually these attributes are relatively small in size when compared with the human body, on top of a large intra-class variation of the human body itself, therefore recognizing them is not an easy task. Our method utilizes a decomposition framework based on Robust Principal Component Analysis (RPCA) to extract the attribute information for recognition. However, because it is difficult to separate the body and the attributes without any prior knowledge, noise is also extracted along with attributes, hampering the recognition capability. We made use of prior knowledge; namely the location where the attribute is likely to be present. The knowledge is referred to as the Probability Map, incorporated as a weight in the decomposition by RPCA. Using the Probability Map, we achieve an attribute-wise decomposition. The results show a significant improvement with this approach compared to the baseline, and the proposed method achieved the highest performance in average with a 0.83 F-score.

  • Generation of Training Data by Degradation Models for Traffic Sign Symbol Recognition

    Hiroyuki ISHIDA  Tomokazu TAKAHASHI  Ichiro IDE  Yoshito MEKADA  Hiroshi MURASE  

     
    PAPER

      Vol:
    E90-D No:8
      Page(s):
    1134-1141

    We present a novel training method for recognizing traffic sign symbols. The symbol images captured by a car-mounted camera suffer from various forms of image degradation. To cope with degradations, similarly degraded images should be used as training data. Our method artificially generates such training data from original templates of traffic sign symbols. Degradation models and a GA-based algorithm that simulates actual captured images are established. The proposed method enables us to obtain training data of all categories without exhaustively collecting them. Experimental results show the effectiveness of the proposed method for traffic sign symbol recognition.

  • Efficient Tracking of News Topics Based on Chronological Semantic Structures in a Large-Scale News Video Archive

    Ichiro IDE  Tomoyoshi KINOSHITA  Tomokazu TAKAHASHI  Hiroshi MO  Norio KATAYAMA  Shin'ichi SATOH  Hiroshi MURASE  

     
    PAPER-Video Processing

      Vol:
    E95-D No:5
      Page(s):
    1288-1300

    Recent advance in digital storage technology has enabled us to archive a large volume of video data. Thanks to this trend, we have archived more than 1,800 hours of video data from a daily Japanese news show in the last ten years. When considering the effective use of such a large news video archive, we assumed that analysis of its chronological and semantic structure becomes important. We also consider that providing the users with the development of news topics is more important to help their understanding of current affairs, rather than providing a list of relevant news stories as in most of the current news video retrieval systems. Therefore, in this paper, we propose a structuring method for a news video archive, together with an interface that visualizes the structure, so that users could track the development of news topics according to their interest, efficiently. The proposed news video structure, namely the “topic thread structure”, is obtained as a result of an analysis of the chronological and semantic relation between news stories. Meanwhile, the proposed interface, namely “mediaWalker II”, allows users to track the development of news topics along the topic thread structure, and at the same time watch the video footage corresponding to each news story. Analyses on the topic thread structures obtained by applying the proposed method to actual news video footages revealed interesting and comprehensible relations between news topics in the real world. At the same time, analyses on their size quantified the efficiency of tracking a user's topic-of-interest based on the proposed topic thread structure. We consider this as a first step towards facilitating video authoring by users based on existing contents in a large-scale news video archive.

  • Construction of Appearance Manifold with Embedded View-Dependent Covariance Matrix for 3D Object Recognition

    Lina  Tomokazu TAKAHASHI  Ichiro IDE  Hiroshi MURASE  

     
    PAPER-Pattern Recognition

      Vol:
    E91-D No:4
      Page(s):
    1091-1100

    We propose the construction of an appearance manifold with embedded view-dependent covariance matrix to recognize 3D objects which are influenced by geometric distortions and quality degradation effects. The appearance manifold is used to capture the pose variability, while the covariance matrix is used to learn the distribution of samples for gaining noise-invariance. However, since the appearance of an object in the captured image is different for every different pose, the covariance matrix value is also different for every pose position. Therefore, it is important to embed view-dependent covariance matrices in the manifold of an object. We propose two models of constructing an appearance manifold with view-dependent covariance matrix, called the View-dependent Covariance matrix by training-Point Interpolation (VCPI) and View-dependent Covariance matrix by Eigenvector Interpolation (VCEI) methods. Here, the embedded view-dependent covariance matrix of the VCPI method is obtained by interpolating every training-points from one pose to other training-points in a consecutive pose. Meanwhile, in the VCEI method, the embedded view-dependent covariance matrix is obtained by interpolating only the eigenvectors and eigenvalues without considering the correspondences of each training image. As it embeds the covariance matrix in manifold, our view-dependent covariance matrix methods are robust to any pose changes and are also noise invariant. Our main goal is to construct a robust and efficient manifold with embedded view-dependent covariance matrix for recognizing objects from images which are influenced with various degradation effects.

  • Cross-Pose Face Recognition – A Virtual View Generation Approach Using Clustering Based LVTM

    Xi LI  Tomokazu TAKAHASHI  Daisuke DEGUCHI  Ichiro IDE  Hiroshi MURASE  

     
    PAPER-Face Perception and Recognition

      Vol:
    E96-D No:3
      Page(s):
    531-537

    This paper presents an approach for cross-pose face recognition by virtual view generation using an appearance clustering based local view transition model. Previously, the traditional global pattern based view transition model (VTM) method was extended to its local version called LVTM, which learns the linear transformation of pixel values between frontal and non-frontal image pairs from training images using partial image in a small region for each location, instead of transforming the entire image pattern. In this paper, we show that the accuracy of the appearance transition model and the recognition rate can be further improved by better exploiting the inherent linear relationship between frontal-nonfrontal face image patch pairs. This is achieved based on the observation that variations in appearance caused by pose are closely related to the corresponding 3D structure and intuitively frontal-nonfrontal patch pairs from more similar local 3D face structures should have a stronger linear relationship. Thus for each specific location, instead of learning a common transformation as in the LVTM, the corresponding local patches are first clustered based on an appearance similarity distance metric and then the transition models are learned separately for each cluster. In the testing stage, each local patch for the input non-frontal probe image is transformed using the learned local view transition model corresponding to the most visually similar cluster. The experimental results on a real-world face dataset demonstrated the superiority of the proposed method in terms of recognition rate.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.