1-2hit |
Jieyun ZHOU Xiaofeng LI Haitao CHEN Rutong CHEN Masayuki NUMAO
Objects tracking methods have been wildly used in the field of video surveillance, motion monitoring, robotics and so on. Particle filter is one of the promising methods, but it is difficult to apply to real-time objects tracking because of its high computation cost. In order to reduce the processing cost without sacrificing the tracking quality, this paper proposes a new method for real-time 3D objects tracking, using parallelized particle filter algorithms by MapReduce architecture which is running on GPGPU. Our methods are as follows. First, we use a Kinect to get the 3D information of objects. Unlike the conventional 2D-based objects tracking, 3D objects tracking adds depth information. It can track not only from the x and y axis but also from the z axis, and the depth information can correct some errors in 2D objects tracking. Second, to solve the high computation cost problem, we use the MapReduce architecture on GPGPU to parallelize the particle filter algorithm. We implement the particle filter algorithms on GPU and evaluate the performance by actually running a program on CUDA5.5.
Yingxiao XIANG Chao LI Tong CHEN Yike LI Endong TONG Wenjia NIU Qiong LI Jiqiang LIU Wei WANG
Controlled optimization of phases (COP) is a core implementation in the future intelligent traffic signal system (I-SIG), which has been deployed and tested in countries including the U.S. and China. In such a system design, optimal signal control depends on dynamic traffic situation awareness via connected vehicles. Unfortunately, I-SIG suffers data spoofing from any hacked vehicle; in particular, the spoofing of the last vehicle can break the system and cause severe traffic congestion. Specifically, coordinated attacks on multiple intersections may even bring cascading failure of the road traffic network. To mitigate this security issue, a blockchain-based multi-intersection joint defense mechanism upon COP planning is designed. The major contributions of this paper are the following. 1) A blockchain network constituted by road-side units at multiple intersections, which are originally distributed and decentralized, is proposed to obtain accurate and reliable spoofing detection. 2) COP-oriented smart contract is implemented and utilized to ensure the credibility of spoofing vehicle detection. Thus, an I-SIG can automatically execute a signal planning scheme according to traffic information without spoofing data. Security analysis for the data spoofing attack is carried out to demonstrate the security. Meanwhile, experiments on the simulation platform VISSIM and Hyperledger Fabric show the efficiency and practicality of the blockchain-based defense mechanism.