1-4hit |
Tongxin YANG Toshinori SATO Tomoaki UKEZONO
Addition is a key fundamental function for many error-tolerant applications. Approximate addition is considered to be an efficient technique for trading off energy against performance and accuracy. This paper proposes a carry-maskable adder whose accuracy can be configured at runtime. The proposed scheme can dynamically select the length of the carry propagation to satisfy the quality requirements flexibly. Compared with a conventional ripple carry adder and a conventional carry look-ahead adder, the proposed 16-bit adder reduced the power consumption by 54.1% and 57.5%, respectively, and the critical path delay by 72.5% and 54.2%, respectively. In addition, results from an image processing application indicate that the quality of processed images can be controlled by the proposed adder. Good scalability of the proposed adder is demonstrated from the evaluation results using a 32-bit length.
Tongxin YANG Tomoaki UKEZONO Toshinori SATO
Multiplication is a key fundamental function for many error-tolerant applications. Approximate multiplication is considered to be an efficient technique for trading off energy against performance and accuracy. This paper proposes an accuracy-controllable multiplier whose final product is generated by a carry-maskable adder. The proposed scheme can dynamically select the length of the carry propagation to satisfy the accuracy requirements flexibly. The partial product tree of the multiplier is approximated by the proposed tree compressor. An 8×8 multiplier design is implemented by employing the carry-maskable adder and the compressor. Compared with a conventional Wallace tree multiplier, the proposed multiplier reduced power consumption by between 47.3% and 56.2% and critical path delay by between 29.9% and 60.5%, depending on the required accuracy. Its silicon area was also 44.6% smaller. In addition, results from two image processing applications demonstrate that the quality of the processed images can be controlled by the proposed multiplier design.
Tongxin YANG Tomoaki UKEZONO Toshinori SATO
Many applications, such as image signal processing, has an inherent tolerance for insignificant inaccuracies. Multiplication is a key arithmetic function for many applications. Approximate multipliers are considered an efficient technique to trade off energy relative to performance and accuracy for the error-tolerant applications. Here, we design and analyze four approximate multipliers that demonstrate lower power consumption and shorter critical path delay than the conventional multiplier. They employ an approximate tree compressor that halves the height of the partial product tree and generates a vector to compensate accuracy. Compared with the conventional Wallace tree multiplier, one of the evaluated 8-bit approximate multipliers reduces power consumption and critical path delay by 36.9% and 38.9%, respectively. With a 0.25% normalized mean error distance, the silicon area required to implement the multiplier is reduced by 50.3%. Our multipliers outperform the previously proposed approximate multipliers relative to power consumption, critical path delay, and design area. Results from two image processing applications also demonstrate that the qualities of the images processed by our multipliers are sufficiently accurate for such error-tolerant applications.
Toshinori SATO Tongxin YANG Tomoaki UKEZONO
Approximate computing is a promising paradigm to realize fast, small, and low power characteristics, which are essential for modern applications, such as Internet of Things (IoT) devices. This paper proposes the Carry-Predicting Adder (CPredA), an approximate adder that is scalable relative to accuracy and power consumption. The proposed CPredA improves the accuracy of a previously studied adder by performing carry prediction. Detailed simulations reveal that, compared to the existing approximate adder, accuracy is improved by approximately 50% with comparable energy efficiency. Two application-level evaluations demonstrate that the proposed approximate adder is sufficiently accurate for practical use.