1-2hit |
Soodesh BULJORE Markus MUCK Patricia MARTIGNE Paul HOUZE Hiroshi HARADA Kentaro ISHIZU Oliver HOLLAND Andrej MIHAILOVIC Kostas A. TSAGKARIS Oriol SALLENT Gary CLEMO Mahesh SOORIYABANDARA Vladimir IVANOV Klaus NOLTE Makis STAMETALOS
The Project Authorization Request (PAR) for the IEEE P1900.4 Working Group (WG), under the IEEE Standards Coordinating Committee 41 (SCC41) was approved in December 2006, leading to this WG being officially launched in February 2007 [1]. The scope of this standard is to devise a functional architecture comprising building blocks to enable coordinated network-device distributed decision making, with the goal of aiding the optimization of radio resource usage, including spectrum access control, in heterogeneous wireless access networks. This paper introduces the activities and work under progress in IEEE P1900.4, including its scope and purpose in Sects. 1 and 2, the reference usage scenarios where the standard would be applicable in Sect. 4, and its current system architecture in Sect. 5.
Yong JIN Chiyoung AHN Seungwon CHOI Markus MUECK Vladimir IVANOV Tapan K. SARKAR
In heterogeneous networks, network selection is an important task for reconfigurable mobile devices (MDs). In the reconfigurable MD architecture that has been standardized by the European Telecommunications Standards Institute (ETSI), the network selection functionality is handled by a software component called Mobility Policy Manager (MPM). In this paper, we present an implementation of the MPM whereby a reconfigurable MD conforming to the ETSI standard can select the most appropriate radio access network (RAN) to use. We implemented a reconfigurable MD test-bed compliant with the ETSI standard, and show that the network selection driven by the MPM enhances the throughput of the receiving MD by about 26% compared to the arbitrary network selection provided by a conventional reconfigurable MD without the functionality of MPM, verifying the functionality of the MPM.