1-2hit |
We propose a new visual tracking method, where the target appearance is represented by combining color distribution and keypoints. Firstly, the object is localized via a keypoint-based tracking and matching strategy, where a new clustering method is presented to remove outliers. Secondly, the tracking confidence is evaluated by the color template. According to the tracking confidence, the local and global keypoints matching can be performed adaptively. Finally, we propose a target appearance update method in which the new appearance can be learned and added to the target model. The proposed tracker is compared with five state-of-the-art tracking methods on a recent benchmark dataset. Both qualitative and quantitative evaluations show that our method has favorable performance.
Wang LUO Hongliang LI Guanghui LIU Guan GUI
In this letter, we propose a novel method for change detection in multitemporal optical satellite images. Unlike the tradition methods, the proposed method is able to detect changed region even from unregistered images. In order to obtain the change detection map from the unregistered images, we first compute the sum of the color difference (SCD) of a pixel to all pixels in an input image. Then we calculate the SCD of this pixel to all pixels in the other input image. Finally, we use the difference of the two SCDs to represent the change detection map. Experiments on the multitemporal images demonstrates the good performance of the proposed method on the unregistered images.