1-5hit |
Wei MIAO Xiang CHEN Ming ZHAO Shidong ZHOU Jing WANG
This paper addresses the problem of joint transceiver design for Tomlinson-Harashima Precoding (THP) in the multiuser multiple-input-multiple-output (MIMO) downlink under both perfect and imperfect channel state information at the transmitter (CSIT). For the case of perfect CSIT, we differ from the previous work by performing stream-wise (both inter-user and intra-user) interference pre-cancelation at the transmitter. A minimum total mean square error (MT-MSE) criterion is used to formulate our optimization problem. By some convex analysis of the problem, we obtain the necessary conditions for the optimal solution. An iterative algorithm is proposed to handle this problem and its convergence is proved. Then we extend our designed algorithm to the robust version by minimizing the conditional expectation of the T-MSE under imperfect CSIT. Simulation results are given to verify the efficacy of our proposed schemes and to show their superiorities over existing MMSE-based THP schemes.
Wei MIAO Yunzhou LI Xiang CHEN Shidong ZHOU Jing WANG
This letter addresses the problem of robust transceiver design for the multiuser multiple-input-multiple-output (MIMO) downlink where the channel state information at the base station (BS) is imperfect. A stochastic approach which minimizes the expectation of the total mean square error (MSE) of the downlink conditioned on the channel estimates under a total transmit power constraint is adopted. The iterative algorithm reported in [2] is improved to handle the proposed robust optimization problem. Simulation results show that our proposed robust scheme effectively reduces the performance loss due to channel uncertainties and outperforms existing methods, especially when the channel errors of the users are different.
Tan PENG Huijuan CUI Kun TANG Wei MIAO
In digital speech communication over noisy high packet loss rate wireless channels, improving the overall performance of the realtime speech coding and transmission system is of great importance. A novel joint speech coding and transmission algorithm is proposed by fully exploiting the correlation between speech coding, channel coding and the transmission process. The proposed algorithm requires no algorithm delay and less bandwidth expansion while greatly enhancing the error correcting performance and the reconstructed speech quality compared with conventional algorithms. Simulations show that the residual error rate is reduced by 84.36% and the MOS (Mean Opinion Score) is improved over 38.86%.
Wei MIAO Yunzhou LI Shidong ZHOU Jing WANG Xibin XU
Vector precoding is a nonlinear broadcast precoding scheme in the downlink of multi-user MIMO systems which outperforms linear precoding and THP (Tomlinson-Harashima Precoding). This letter discusses the problem of joint receive antenna selection in the multi-user MIMO downlink with vector precoding. Based on random matrix analysis, we derive a simple heuristic selection criterion using singular value decomposition (SVD) and carry out an exhaustive search to determine for each user which receive antenna should be used. Simulation results reveal that receive antenna selection using our proposed criterion obtains the same diversity order as the optimal selection criterion.
Tan PENG Xiangming XU Huijuan CUI Kun TANG Wei MIAO
Improving the overall performance of reliable speech communication in ultrashort wave radios over very noisy channels is of great importance and practical use. An iterative joint source-channel (de-)coding and (de-)modulation (JSCCM) algorithm is proposed for ITU-T Rec.G.729EV by both exploiting the residual redundancy and passing soft information throughout the receiver while introducing a systematic global iteration process. Being fully compatible with existing transmitter structure, the proposed algorithm does not introduce additional bandwidth expansion and transmission delay. Simulations show substantial error correcting performance and synthesized speech quality improvement over conventional separate designed systems in delay and bandwidth constraint channels by using the JSCCM algorithm.