1-4hit |
Dongliang CHEN Peng SONG Wenjing ZHANG Weijian ZHANG Bingui XU Xuan ZHOU
In this letter, we propose a novel robust transferable subspace learning (RTSL) method for cross-corpus facial expression recognition. In this method, on one hand, we present a novel distance metric algorithm, which jointly considers the local and global distance distribution measure, to reduce the cross-corpus mismatch. On the other hand, we design a label guidance strategy to improve the discriminate ability of subspace. Thus, the RTSL is much more robust to the cross-corpus recognition problem than traditional transfer learning methods. We conduct extensive experiments on several facial expression corpora to evaluate the recognition performance of RTSL. The results demonstrate the superiority of the proposed method over some state-of-the-art methods.
Keke ZHAO Peng SONG Shaokai LI Wenjing ZHANG Wenming ZHENG
In this letter, we present an adaptive weighted transfer subspace learning (AWTSL) method for cross-database speech emotion recognition (SER), which can efficiently eliminate the discrepancy between source and target databases. Specifically, on one hand, a subspace projection matrix is first learned to project the cross-database features into a common subspace. At the same time, each target sample can be represented by the source samples by using a sparse reconstruction matrix. On the other hand, we design an adaptive weighted matrix learning strategy, which can improve the reconstruction contribution of important features and eliminate the negative influence of redundant features. Finally, we conduct extensive experiments on four benchmark databases, and the experimental results demonstrate the efficacy of the proposed method.
Wenjing ZHANG Peng SONG Wenming ZHENG
In this letter, we propose a novel transferable sparse regression (TSR) method, for cross-database facial expression recognition (FER). In TSR, we firstly present a novel regression function to regress the data into a latent representation space instead of a strict binary label space. To further alleviate the influence of outliers and overfitting, we impose a row sparsity constraint on the regression term. And a pairwise relation term is introduced to guide the feature transfer learning. Secondly, we design a global graph to transfer knowledge, which can well preserve the cross-database manifold structure. Moreover, we introduce a low-rank constraint on the graph regularization term to uncover additional structural information. Finally, several experiments are conducted on three popular facial expression databases, and the results validate that the proposed TSR method is superior to other non-deep and deep transfer learning methods.
Zihao SONG Peng SONG Chao SHENG Wenming ZHENG Wenjing ZHANG Shaokai LI
Unsupervised Feature selection is an important dimensionality reduction technique to cope with high-dimensional data. It does not require prior label information, and has recently attracted much attention. However, it cannot fully utilize the discriminative information of samples, which may affect the feature selection performance. To tackle this problem, in this letter, we propose a novel discriminative virtual label regression method (DVLR) for unsupervised feature selection. In DVLR, we develop a virtual label regression function to guide the subspace learning based feature selection, which can select more discriminative features. Moreover, a linear discriminant analysis (LDA) term is used to make the model be more discriminative. To further make the model be more robust and select more representative features, we impose the ℓ2,1-norm on the regression and feature selection terms. Finally, extensive experiments are carried out on several public datasets, and the results demonstrate that our proposed DVLR achieves better performance than several state-of-the-art unsupervised feature selection methods.