1-5hit |
Xiang JI Huiqun YU Guisheng FAN Wenhao FU
Vehicular ad hoc network (VANET) is an emerging technology for the future intelligent transportation systems (ITS). How to design an efficient routing protocol for VANET is a challenging task due to the high mobility and uneven distribution of vehicles in urban areas. This paper proposes a backbone-based approach to providing the optimal inner-street relaying strategy. The virtual backbone is created distributively in each road segment based on the newly introduced stability index, which considers the link stability between vehicles and the mobility of vehicles. We also deploy the roadside unit (RSU) at intersections to determine the next path for forwarding data. The RSU gathers a global view of backbone vehicles on each road connected to the junction and analyzes the performance of the backbone as a basis of routing path selection. Simulation results show that the proposed protocol outperforms the conventional protocols in terms of packet delivery ratio and end-to-end delay.
Tie Jun CUI Xiao-Yang ZHOU Xin Mi YANG Wei Xiang JIANG Qiang CHENG Hui Feng MA
We present a review of several types of microwave antennas made of metamaterials, including the resonant electrically small antennas, metamaterial-substrate patch antennas, metamaterial flat-lens antennas, and Luneburg lens antennas. In particular, we propose a new type of conformal antennas using anisotropic zero-index metamaterials, which have high gains and low sidelobes. Numerical simulations and experimental results show that metamaterials have unique properties to design new antennas with high performance.
Wenhao FU Huiqun YU Guisheng FAN Xiang JI
Regression testing is essential for assuring the quality of a software product. Because rerunning all test cases in regression testing may be impractical under limited resources, test case prioritization is a feasible solution to optimize regression testing by reordering test cases for the current testing version. In this paper, we propose a novel test case prioritization approach that combines the clustering algorithm and the scheduling algorithm for improving the effectiveness of regression testing. By using the clustering algorithm, test cases with same or similar properties are merged into a cluster, and the scheduling algorithm helps allocate an execution priority for each test case by incorporating fault detection rates with the waiting time of test cases in candidate set. We have conducted several experiments on 12 C programs to validate the effectiveness of our proposed approach. Experimental results show that our approach is more effective than some well studied test case prioritization techniques in terms of average percentage of fault detected (APFD) values.
Yanxiang JIANG Xiqi GAO Xiaohu YOU
A novel frequency domain training sequence and the corresponding carrier frequency offset (CFO) estimator are proposed for orthogonal frequency division multiplexing (OFDM) systems over frequency-selective fading channels. The proposed frequency domain training sequence comprises two types of pilot tones, namely distinctively spaced pilot tones with high energies and uniformly spaced ones with low energies. Based on the distinctively spaced pilot tones, integer CFO estimation is accomplished. After the subcarriers occupied by the distinctively spaced pilot tones and their adjacent subcarriers are nulled for the sake of interference cancellation, fractional CFO estimation is executed according to the uniformly spaced pilot tones. By exploiting a predefined lookup table making the best of the structure of the distinctively spaced pilot tones, computational complexity of the proposed CFO estimator can be decreased considerably. With the aid of the uniformly spaced pilot tones generated from Chu sequence with cyclically orthogonal property, the ability of the proposed estimator to combat multipath effect is enhanced to a great extent. Simulation results illustrate the good performance of the proposed CFO estimator.
Yanxiang JIANG Yanxin HU Xiaohu YOU
In this letter, signal to interference plus noise ratio (SINR) performance is analyzed for orthogonal frequency division multiplexing (OFDM) based amplify-and-forward (AF) relay systems in the presence of carrier frequency offset (CFO) for fading channels. The SINR expression is derived under the one-relay-node scenario, and is further extended to the multiple-relay-node scenario. Analytical results show that the SINR is quite sensitive to CFO and the sensitivity of the SINR to CFO is mainly determined by the gain factor and the different power of the direct link channel and relay link channel.