1-7hit |
Jingya LI Xiaodong XU Xin CHEN Xiaofeng TAO Hui ZHANG Tommy SVENSSON Carmen BOTELLA
Base station coordination is considered as a promising technique to mitigate inter-cell interference and improve the cell-edge performance in cellular orthogonal frequency division multiple-access (OFDMA) networks. The problem to design an efficient radio resource allocation scheme for coordinated cellular OFDMA networks incorporating base station coordination has been only partially investigated. In this contribution, a novel radio resource allocation algorithm with universal frequency reuse is proposed to support base station coordinated transmission. Firstly, with the assumption of global coordination between all base station sectors in the network, a coordinated subchannel assignment algorithm is proposed. Then, by dividing the entire network into a number of disjoint coordinated clusters of base station sectors, a reduced-feedback algorithm for subchannel assignment is proposed for practical use. The utility function based on the user average throughput is used to balance the efficiency and fairness of wireless resource allocation. System level simulation results demonstrate that the reduced-feedback subchannel assignment algorithm significantly improves the cell-edge average throughput and the fairness index of users in the network, with acceptable degradation of cell-average performance.
Hui ZHANG Xiaodong XU Xiaofeng TAO Ping ZHANG Ping WU
Orthogonal frequency division multiplexing (OFDM) is a critical technology in 3G evolution systems, which can effectively avoid intra-cell interference, but may bring with serious inter-cell interference. Inter-cell interference cancellation is one of effective schemes taken in mitigating inter-cell interference, but for many existing schemes in inter-cell interference cancellation, various generalized spatial diversities are taken, which always bring with extra interference and blind spots, or even need to acquire extra information on source and channel. In this paper, a novel inter-cell interference mitigation method is proposed for 3G evolution systems. This method is based on independent component analysis in blind source separation, and the input signal to interference plus noise ratio (SINR) is set as objective function. By generalized eigenvalue decomposition and algorithm iterations, maximum signal noise ratio (SNR) can be obtained in output. On the other hand, this method can be worked with no precise knowledge of source signal and channel information. Performance evaluation shows that such method can mitigate inter-cell interference in a semi-blind state, and effectively improve output SNR with the condition that lower input SINR, higher input SNR and longer lengths of the processing frame.
Baisheng DU Xiaodong XU Xuchu DAI
In this paper, we investigate unitary precoder design for multiple-input multiple-output (MIMO) multicasting, where multiple common data streams are sent to a group of users. Assuming that zero-forcing decision feedback equalizers (ZF-DFE) are adopted at the receiver side, we can convert the multicast channel into multiple parallel subchannels. To improve the receiving quality of all data streams, we focus on maximizing the minimal signal-to-noise ratio (SNR) of all data streams. To effectively handle this non-convex optimization problem, we first consider the special case of two data streams and derive the closed-form solution of the SNR vectors for both subchannels. Based on these results, a gradient-based iterative algorithm is developed for the proposed precoder design. For the general case, a Givens rotation-based iterative algorithm is proposed, where at each iteration the original problem of unitary precoder design is transformed into a dual-stream subproblem. Hence it can be solved efficiently by the gradient-based iterative algorithm. Finally, simulation results are presented to demonstrate the outstanding performance of the proposed design.
Zilong ZHANG Baisheng DU Xiaodong XU
Broadband wireless channels are frequency selective in nature. In this paper, a novel precoder with finite impulse response (FIR) structure is proposed to maximize the throughput of the multiple-input multiple-output (MIMO) frequency-selective multicast channel. An iteration mechanism is investigated to obtain the desired FIR precoding matrix. In the iterative process, two associated parameters, namely the innovation orientation and the iteration step size, are jointly derived by the convex optimization program and the traditional Gauss-Newton algorithm. Convergence and complexity analyses are presented, and the numerical simulations indicate that the proposed method outperforms the existing schemes in the moderate to high signal to noise ratio (SNR) regime.
Peng ZHANG Xiaodong XU Guangguo BI Xiuying CAO Junhui ZHAO
In this paper, the relationship between correlation interval (CI) and estimate is investigated. Then a special correlation interval is explored that is adaptive to all levels of signal-to-noise ratio (SNR) and velocity conditions, and the mean square error is deduced. Finally, we propose an iterative algorithm that achieves the special correlation interval and calculates the Doppler spread by increasing the resolution on time-domain iteratively. Simulation results show that compared with conventional schemes, performance of the proposed algorithm is basically independent of velocity variation and less sensitive to SNR, especially in low SNR environments. It achieves high accurate estimation directly without any post-rectification.
Xiaodong XU Ya JING Xiaohu YOU Junhui ZHAO
In this letter, we propose an FFT-based SNR estimation method for wireless OFDM systems, and analyze the impact of the proposed SNR estimation method on adaptive OFDM performance in slow Rayleigh fading channels. Numerical and simulation results show that the proposed method is effective and feasible for adaptive modulation in slow Rayleigh fading channels.
Xiaodong XU Ya JING Xiaohu YOU Junhui ZHAO
Multipath search based instantaneous root-mean-squared (RMS) delay spread (RDS) estimators mainly depend on path detection or multipath search. This paper proposes a novel method for multipath search through Minimum Descriptive Length (MDL) criterion, and hence a novel instantaneous RDS estimation method for wireless OFDM systems. compared with the conventional multipath search based instantaneous RDS estimators, the proposed estimator doesn't need any a priori information about the noise variance and the channel power delay profile (PDP) while the performance is improved. Simulation results demonstrate that the proposed estimator is also insensitive to the variance of SNR and robust against the frequency selectivity, as well as the vehicle speed.