1-2hit |
Yang WU Weiwei YANG Di ZHANG Xiaoli SUN
Unmanned aerial vehicle (UAV) communication has drawn rising interest recently with the distinctive gains brought by its inherent mobility. In this paper, we investigate the throughput maximization problem in UAV-enabled uplink communication, where multiple ground nodes communicate with a UAV while a group of ground jammers send jamming signals to jam the communications between UAV and the ground nodes. In contrast to the previous works that only considering UAV's transmit power allocation and two-dimension (2D) trajectory design, the ground nodes' transmit power allocation and scheduling along with the UAV's three-dimensional (3D) trajectory design are jointly optimized. The formulated throughput maximization problem is a mixed-integer non-convex programme that hard to be solved in general. Thus, we propose an iterative algorithm to make the problem trackable by applying the block coordinate descent and successive convex optimization techniques. Simulation results show that our proposed algorithm outperforms the benchmark methods that improving the throughput of the system significantly.
Xuanxuan TANG Wendong YANG Yueming CAI Weiwei YANG Yuyang ZHANG Xiaoli SUN Yufeng QIAN
This paper studies the secrecy throughput performance of the three-node wireless-powered networks and proposes two secure transmission schemes, namely the half-duplex maximal ratio combining (HD&MRC) scheme and the full-duplex jamming scheme based on time switching simultaneous wireless information and power transfer (FDJ&TS-SWIPT). The closed-form expressions of the secrecy throughput are derived, and intuitive comparison of the two schemes is provided. It is illustrated that the HD&MRC scheme only applies to the low and medium signal-to-noise ratio (SNR) regime. On the contrary, the suitable SNR regime of the FDJ&TS-SWIPT is much wider. It is depicted that FDJ&TS-SWIPT combing with current passive self-interference cancellation (SIC) algorithm outperforms HD&MRC significantly, especially when a medium or high transmit SNR is provided. Numerical simulations are conducted for verifying the validity of the analysis.