1-5hit |
Xiaomin WANG Kazuro KIKUCHI Yuichi TAKUSHIMA
We analyze the dispersion-managed optical transmission system for the non-return-to-zero (NRZ) pulse format. First, we investigate the physical image of dispersion management by computing small-signal-based transfer functions, and summarize the dependence of transmission performance on system parameters. Next, the Q-map is computed numerically to design long-distance large-capacity dispersion-managed transmission systems for a single channel in a more detailed manner. It is shown that the third-order dispersion of fibers negatively influences transmission performance, and third-order dispersion compensation is proved to be an effective method for extending the transmission distance of high bit-rate systems. Utilizing these results, guidelines can be derived for the optimal design of long-distance large-capacity NRZ transmission systems.
Xiaomin WANG Daisuke KUNIMATSU Tatsushi HASEGAWA Akira SUZUKI
We demonstrate the wide-band (> 25-nm) long-distance (> 1000-km) chromatic dispersion compensation by midway spectral inversion (MSI) using a periodically-polled LiNbO3 device. In order to achieve a flat zero net dispersion, the fourth order dispersion of the single-mode fibers is canceled by MSI, while the third order dispersion is compensated for by the negative slope dispersion compensation fiber (NS-DCF). The second order dispersion is canceled out by both. The long distance propagation is realized by a double recirculation-loop system. A very flat zero dispersion is measured for the first time for over 1000-km single-mode fiber propagation with MSI dispersion compensation.
Shin-ichi WAKABAYASHI Asako BABA Hitomi MORIYA Xiaomin WANG Tatsushi HASEGAWA Akira SUZUKI
We have developed the tunable dispersion compensator based on two twin linearly chirped fiber Bragg gratings with various temperature gradients. Controlling the temperature gradient over one of the twin fiber Bragg gratings by Peltier elements, the dispersion and the dispersion slope were changed independently and continuously. The dispersion and dispersion slope compensator has a large bandwidth of 8 nm and low group-delay ripple of < 4 ps in its chirped fiber Bragg gratings. We experimentally demonstrated a precise controllability of the dispersion and the dispersion slope using linear and parabolic temperature gradient. The dispersion and the dispersion slope changes were achieved continuously with -0.67 ps/nm/ and -0.14 ps/nm2/. The transmission characteristics of the dispersion slope compensation were examined using ultra short pulses in the fiber link. When the total dispersion was zero, the distorted pulse was restored back and the tail was significantly suppressed. 160 Gbit/s signals were also demonstrated over 140 km within 1 dB power penalty by using the dispersion slope compensator.
Ziying DAI Xiaoguang MAO Yan LEI Xiaomin WAN Kerong BEN
A garbage collector relieves programmers from manual memory management and improves productivity and program reliability. However, there are many other finite system resources that programmers must manage by themselves, such as sockets and database connections. Growing resource leaks can lead to performance degradation and even program crashes. This paper presents the automatic resource collection approach called Resco (RESource COllector) to tolerate non-memory resource leaks. Resco prevents performance degradation and crashes due to resource leaks by two steps. First, it utilizes monitors to count resource consumption and request resource collections independently of memory usage when resource limits are about to be violated. Second, it responds to a resource collection request by safely releasing leaked resources. We implement Resco based on a Java Virtual Machine for Java programs. The performance evaluation against standard benchmarks shows that Resco has a very low overhead, around 1% or 3%. Experiments on resource leak bugs show that Resco successfully prevents most of these programs from crashing with little increase in execution time.
Xiaomin WANG Kazuro KIKUCHI Yuichi TAKUSHIMA
We analyze the dispersion-managed optical transmission system for the non-return-to-zero (NRZ) pulse format. First, we investigate the physical image of dispersion management by computing small-signal-based transfer functions, and summarize the dependence of transmission performance on system parameters. Next, the Q-map is computed numerically to design long-distance large-capacity dispersion-managed transmission systems for a single channel in a more detailed manner. It is shown that the third-order dispersion of fibers negatively influences transmission performance, and third-order dispersion compensation is proved to be an effective method for extending the transmission distance of high bit-rate systems. Utilizing these results, guidelines can be derived for the optimal design of long-distance large-capacity NRZ transmission systems.